Remove ads
elektrochemisches Verfahren Aus Wikipedia, der freien Enzyklopädie
Die Polarografie (ein Sonderfall der Voltammetrie) ist ein elektrochemisches Verfahren zur qualitativen und quantitativen Analyse von chemischen Elementen und Verbindungen, vor allem Ionen und Molekülen in einer Lösung. Während bei der Voltammetrie mit stationären Elektroden gearbeitet wird, werden bei der Polarografie Quecksilbertropfelektroden eingesetzt. Sie wurde 1922 von Jaroslav Heyrovský entwickelt und beruht auf der Messung des Elektrolysestroms an einer Quecksilbertropfelektrode. Mit Hilfe der Polarografie ist es möglich, auch unedle Metalle wegen der großen Überspannung von Wasserstoff an Quecksilber bei stark negativen Potenzialen elektrolytisch abzuscheiden und den dabei fließenden Strom zu messen. Dieser stellt das analytische Signal dar.[1]
Die Quecksilbertropfelektrode besteht aus einem Quecksilberreservoir und einer Kapillare, aus der Quecksilbertropfen in eine zu untersuchende Lösung fallen. Sie wird als Arbeitselektrode (auch Messelektrode) in der Polarografie verwendet und ist eine ideal polarisierbare Elektrode, d. h., man kann ihr ein elektrisches Potenzial aufprägen, ohne dass es zu einem Ladungsdurchtritt über die Elektrode-Lösung-Phasengrenze kommt, vorausgesetzt in der Lösung befinden sich keine Depolarisatoren. Depolarisatoren sind oxidierbare oder reduzierbare Substanzen. Wenn dies aber doch der Fall ist, kommt es zum Ladungsdurchtritt, die Substanz depolarisiert die Arbeitselektrode, und es fließt ein Strom.
In einer einfachen Zwei-Elektroden-Anordnung übernimmt die Gegenelektrode auch die Funktion der Referenzelektrode. Günstiger ist eine Drei-Elektroden-Anordnung, bei der der Elektrolysestrom über eine Gegenelektrode aus Edelmetall oder Kohlenstoff fließt, während die Referenzelektrode stromlos bleibt. Als Referenzelektrode dient in der Regel eine Elektrode zweiter Art, z. B. eine Kalomelelektrode oder eine Silber-Silberchlorid-Elektrode. Die Vorteile liegen in der längeren Haltbarkeit der Referenzelektrode und geringeren Störungen des angelegten Potenzials durch Überspannungseffekte an der Gegenelektrode.
Bei der Messung wird eine zeitlich linear veränderliche Spannung vorgegeben und der entstehende Strom registriert. Wenn ein Stoff in der Lösung eine Durchtrittsreaktion verursacht, kommt es zu einem Stromanstieg, d. h., in der Strom-Spannungs-Kurve tritt eine Stufe auf. Die Lage des Potenzials auf halber Höhe dieser Stufe (Halbstufenpotenzial) ist für jede chemische Spezies charakteristisch, womit eine qualitative Analyse möglich ist. Die Höhe der Stufe (also der Strom) ist durch den Diffusionsgrenzstrom gegeben, der sich dann einstellt, wenn die Diffusion des Analyten aus dem Inneren der Lösung zur Elektrodenoberfläche der geschwindigkeitsbestimmende Reaktionsschritt ist. Dadurch ergibt sich die Möglichkeit zur quantitativen Analyse, da der Diffusiongrenzstrom mit der Konzentration des Analyten über die Ilkovič-Gleichung (eine Zahlenwertgleichung) zusammenhängt:[2]
Temperatur in °C | Dichte von Quecksilber in g/cm³ | Wert des Faktors |
---|---|---|
19,2 | 13,54783 | 606,502 |
20,0 | 13,54587 | 606,561 |
22,0 | 13,54096 | 606,707 |
25,0 | 13,53360 | 606,927 |
26,0 | 13,53115 | 607,000 |
32,8 | 13,51451 | 607,499 |
Die Gleichung wurde zuerst von Dionýz Ilkovič hergeleitet. Der Faktor K, auch Ilkovič-Konstante[3] genannt, von rund 607 ergibt sich aus der Lösung der Diffusionsgleichung für den wachsenden Tropfen und Mittelung über die Tropfenzeit. Der genaue theoretische Wert ist durch folgenden Ausdruck gegeben[4]:
ρ ist die Dichte des Quecksilbers, F die Faraday-Konstante. An den Beispielwerten in der Tabelle rechts erkennt man, dass der theoretische Zahlenwert 607 zwischen 19,2 °C und 32,8 °C gelten sollte. Das Halbstufenpotenzial und der Diffusionsgrenzstrom sind die charakteristischen Größen für die Art und die Menge des Depolarisators (Analyten) im gewählten Leitelektrolyt. Die Anwendbarkeit der Polarografie wird durch einige Faktoren beschränkt, wie z. B. dem Auftreten eines kapazitiven Stromes, der zu einem Störsignal führt, der die Nachweisgrenze heraufsetzt. Außerdem treten Tropfenzacken und so genannte polarographische Maxima (wenn der Strom aus verschiedenen Gründen über den Grenzstrom ansteigt) auf.
Diese Probleme sowie die Anforderung höherer Auflösung und Genauigkeit hat zu verschiedenen verbesserten Polarografiemethoden geführt:
Diese Methoden können teilweise weiter unterteilt werden.
Die Polarografie eignet sich grundsätzlich zur genauen Analyse in einem kleinen Konzentrationsbereich sehr vieler anorganischer und organischer Stoffe. Wegen des großen negativen Potenzialbereiches des Quecksilbers findet dabei überwiegend eine kathodische (reduktive) Umsetzung statt. Die Blütezeit der Polarografie reichte von den 1930er bis in die 1980er Jahre. Sie war die erste breit angewendete instrumentelle Analysemethode. In Form der Atomspektrometrie (Elementanalytik) und der Chromatographie (organische Analytik) erwuchsen in den vergangenen Jahrzehnten bedeutende Alternativverfahren, die sich insbesondere durch eine größere Bandbreite bestimmbarer Analyten auszeichnen.[5]
Vorteilhaft sind die hohe erreichbare Genauigkeit (Präzision ca. 1 %), geringe Investitionskosten sowie die Möglichkeit zur Elementspeziesanalyse. In ihrer Abwandlung als Differenzpulspolarografie und inverse Voltammetrie besitzt die Polarografie bei vielen Analyten eine sehr gute Nachweisstärke (vereinzelt die beste aller instrumentellen Methoden, z. B. ppq-Bereich bei Platinmetallen). Der Messbereich kann mehr als 6 Größenordnungen umfassen.[6] Bei der Aufklärung von Redoxreaktionsmechanismen in wässrigen und nichtwässrigen Lösungen kann die Polarografie wertvolle Informationen liefern. Von besonderem Vorteil ist die sich ständig erneuernde und nahezu ideal glatte Elektrodenoberfläche des Quecksilbertropfens.
Nachteilig sind die Störmöglichkeiten durch oberflächenaktive Stoffe, die oftmals geringe Selektivität und der Umgang mit Quecksilber. Letzteres wird zwar vollständig recycelt, beschränkt den Einsatz des Polarografen aber auf das chemische Labor. Obgleich sehr viele Stoffe bestimmt und die meisten Störungen umgangen werden können, setzt die Durchführung der Analysen doch jeweils spezielle Kenntnisse und Erfahrung voraus.
Die Polarografie besitzt noch heute eine große Bedeutung in speziellen Aufgabenbereichen:
Galvanische Bäder, Meerwasserproben und Probelösungen aus Schmelzaufschlüssen enthalten hohe Konzentrationen an Alkalimetallsalzen. Diese lassen sich nicht ohne weiteres entfernen. Höhere Salzkonzentrationen stören bei vielen instrumentellen Analyseverfahren wie der Atomspektroskopie. Man kann den störenden Einfluss dieser Probematrix nur durch Verdünnen herabsetzen. Dies verringert jedoch die Nachweisstärke des gesamten Analyseverfahrens. In der Polarografie dienen diese Salze als Grundelektrolyt und stören nicht weiter.
Verglichen mit anderen instrumentellen Methoden ist die Polarografie mit nur geringen Investitionskosten verbunden. Sie bietet Möglichkeiten der Laborautomation, wie zum Beispiel Probenwechsler. Mehrere Hersteller bieten auch heutzutage (2008) moderne computergesteuerte Polarografen an. Daher kann es sich lohnen, bei nur geringem Probeaufkommen statt eines Atomspektrometers einen Polarografen anzuschaffen. Gleiches gilt für ein Chromatografiegerät, falls routinemäßig nur wenige und immer die gleichen organischen Analyten zu bestimmen sind (Qualitätskontrolle).
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.