Remove ads
Minderung des Signalausgangs Aus Wikipedia, der freien Enzyklopädie
Die negative Rückkopplung, auch Gegenkopplung genannt, bezeichnet das charakteristische Merkmal eines Regelkreises: Die gefilterte Rückführung der Ausgangsgröße UA eines Systems mit verstärkender Eigenschaft auf dessen Eingang, um dort dem Eingangssignal UE entgegenzuwirken. Negative Rückkopplung als wesentlichen Bestandteil der Regulation findet man sowohl in der Biologie als auch in der Technik und im Wirtschaftsleben. Exemplarisch sind derartige Mechanismen bestimmend in der Physiologie, der Populationsentwicklung, aber auch in vielen technischen Anwendungen und in Wirtschaftssystemen anzutreffen. Bei der positiven Rückkopplung wirkt das Ausgangssignal mit Eingangssignal verstärkend. Üblicherweise dienen negative Rückkopplungen in technischen Anwendungen auch der Sicherheit, da sie Systeme in einen sicheren – oder wenigstens beherrschbaren – Grundzustand überführen. Positive Rückkopplungen hingegen können zur Zerstörung der Anlage und Schäden darüber hinaus führen – wie beispielsweise beim thermischen Durchgehen von Batterien oder Leistungsexkursionen von Kernreaktoren. Basiert die Rückkopplung auf physikalischen Gesetzen und nicht auf technischen Einrichtungen spricht man auch von inhärenter Stabilität oder passiver Sicherheit.
Bei lebenden Organismen ermöglicht die Regulierung durch negative Rückkopplung die für die Aufrechterhaltung des Lebens erforderliche Homöostase.
Bei verzerrenden Verstärkern kann eine lineare Rückkopplung mit zunehmender Verstärkung zu einem weniger verzerrenden Gesamtsystem führen. Im Extremfall unendlicher Verstärkung ergibt sich ein lineares Gesamtsystem trotz nichtlinearer Verstärkung, angewandt als Operationsverstärker-Schaltung in der elektrischen Messtechnik.
Operationsverstärker (OP) werden so konstruiert, dass die technischen Daten einer Gesamtschaltung fast ausschließlich durch die äußere Beschaltung des OP definiert werden können. Aus diesem Grund lassen sich ihre Eigenschaften besonders einfach und übersichtlich beschreiben[2][3].
Bei jedem Operationsverstärker verringert sich die Verstärkung mit steigender Frequenz und das Ausgangssignal folgt mit einer gewissen Verzögerung den Änderungen der Eingangsspannung. Weil die genauen Daten die Auslegung der Gegenkopplung maßgeblich beeinflussen, werden sie in jedem Datenblatt angegeben:
Die Differenz 180°-|β| bezeichnet man als Phasenrand oder auch Phasenreserve φ (engl.: Phase margin), als Kennzahl, wie problemlos der Verstärker arbeiten wird. Je näher dieser Wert bei 180° liegt, desto stabiler arbeitet die Gegenkopplung. Je größer β wird, desto geringer ist φ und die Schaltung reagiert nach Sprüngen der Signalamplitude immer „nervöser“, am Verstärkerausgang kann man stärkeres Überschwingen beobachten. Wenn φ negativ wird, ist aus der Gegenkopplung eine Mitkopplung geworden und der Verstärker wirkt als Oszillator. In der Regelungstechnik wird empfohlen, dass der Phasenrand bei etwa 50° liegen soll.
Der Wert von β lässt sich durch interne oder externe Frequenzkompensation des Operationsverstärkers beeinflussen.
In der nebenstehenden Schaltung erzeugt der Spannungsteiler den Anteil
der Ausgangsspannung Ua. Dabei gilt 0 < α ≤ 1. Der rückgekoppelte Anteil wird im OP von der Signalspannung Ue subtrahiert und die Differenz erscheint um den Faktor V verstärkt am Ausgang als Ua. Löst man die entsprechende Gleichung auf, folgt daraus
Die Näherung ist meist genau genug, wenn die Verstärkung des OpAmp 105 übersteigt. Dann wird die Gesamtverstärkung der Schaltung Ua/Ue praktisch nur durch die Gegenkopplung festgelegt. Es mag überraschen, dass die Verstärkung absichtlich verringert wird. Damit erkauft man sich enorme Vorteile: Die Bandbreite wird vergrößert, Fertigungstoleranzen des OP haben keine Bedeutung und die Kennlinie des OP wird linearisiert (weniger Verzerrungen).
Die Eigenschaften elektronischer Bauelemente sind temperaturabhängig, sie streuen herstellungsbedingt und durch Alterung. Wenn sich beispielsweise die open-loop-Verstärkung V des OPs halbiert, ändert sich die Gesamtverstärkung nur unwesentlich. Die Verstärkung des Operationsverstärkers selbst ist meist nicht linear und wäre eigentlich Anlass für Signalverzerrungen. Weil aber Operationsverstärker immer stark gegengekoppelt verwendet werden, zählen sie zu den linearsten Schaltungen. Es reicht, wenn die Verstärkung in der Umgebung des Nullpunkts (Differenzspannung der beiden Eingänge) deutlich größer als die Gesamtverstärkung der Anwendung ist. Nur durch den systematischen Einsatz von Gegenkopplung werden die Eigenschaften von analogen Verstärkern reproduzierbar.
Wird der Ausgang eines Verstärkers belastet, sinkt die Ausgangsspannung. Die Schaltung verhält sich so, als ob die Ursache ein nicht überbrückbarer Innenwiderstand Ra unmittelbar vor dem Ausgang wäre. Eine Spannungsgegenkopplung informiert sozusagen den Verstärkereingang über den Spannungsverlust, der daraufhin so viel mehr Spannung bereitstellt, dass die Sollspannung wieder fast hergestellt ist. Insgesamt wird der effektive Innenwiderstand verringert auf
Beispiel: Ein Operationsverstärker besitzt die Leerlaufverstärkung V = 105 und Ra = 20 Ω. Wenn ein Spannungsteiler mit α = 0,01 gewählt wird, beträgt der effektive Ausgangswiderstand nur noch Reff = 0,02 Ω. Diese Verringerung ist bei den meisten Anwendungen sehr erwünscht.
Wenn eine Erhöhung des Ausgangswiderstandes notwendig ist, kann das durch eine Stromgegenkopplung erreicht werden (siehe Konstantstromquelle).
Bei einem gegengekoppelten Verstärker ist das Verstärkungs-Bandbreite-Produkt konstant und heißt Transitfrequenz fT. Eine Änderung der Gegenkopplung wirkt sich auf die Verstärkung und damit auf die Bandbreite aus.
Bei keinem Verstärker (ohne Gegenkopplung) ist die Ausgangsspannung exakt proportional zur Eingangsspannung, ein Zusammenhang, der in Form einer gekrümmten Kennlinie dargestellt wird. Je stärker die Krümmung, desto größer sind Oberwellengehalt und Klirrfaktor k der Ausgangsspannung. Beides kann mittels Gegenkopplung reduziert werden. Da bei einem OP die „open-loop-Verstärkung“ (ohne Gegenkopplung) immer größer als 10000 ist, kann eine starke Gegenkopplung gewählt werden und es gilt für den Klirrfaktor:
Wenn anstelle des OP ein Transistor oder eine Röhre mit erheblich geringerer Grundverstärkung von nur etwa 50 verwendet wird, kann der Klirrfaktor durch Gegenkopplung nicht beliebig gesenkt werden. Eine weitere Besonderheit ist zu beobachten, wenn statt des OP ein Bauelement mit quadratischer Kennlinie wie beispielsweise ein Feldeffekttransistor verwendet wird[4]:
Gegengekoppelte Verstärker zeigen bei Dauersignalen mit geringen Amplitudenänderungen meist gutartiges Verhalten. Das Zeitverhalten kann dagegen Überraschungen enthalten, wenn ein Impuls (einmaliger, steilflankiger Vorgang, Teil eines Rechtecksignals) den Eingang eines gegengekoppelten Verstärkers erreicht. Der Grund dafür ist im sehr breitbandigen Spektrum einer Rechteckschwingung zu suchen, das sich kaum schwächer werdend bis zu extrem hohen Frequenzen erstreckt. Ein OP verstärkt aber nicht mehr jenseits seiner Transitfrequenz fT und es vergeht eine kurze Zeitspanne, bis das verstärkte Signal am Ausgang erscheint. Das hat nichts mit Übersteuerung und den daraus folgenden noch gravierenderen Auswirkungen zu tun.
Während dieser Zeit hat die Gegenkopplung keine Wirkung (die Schleife ist „offen“), anschließend wird eine „rundlichere“ Funktion mit geringerer Anstiegsgeschwindigkeit vom Eingangssignal subtrahiert, was durch eine kapazitive Last am Ausgang noch verschlimmert wird.
Die hochfrequenten Spektralfrequenzen jenseits von fT können prinzipiell nicht durch Gegenkopplung kompensiert werden. Dieses führt zu transienten Signalabweichungen (sog. „Überschwinger“, auch Gibbssches Phänomen), die umso größer sind, je näher der Verstärker an seiner Instabilitätsgrenze (Phasenrand) arbeitet[5].
Das Phasenverhalten wird auch durch die Last beeinflusst, weshalb Audioverstärker besonders betroffen sind, da die an ihnen betriebenen Lasten (Lautsprecherbox) einen stark frequenzabhängigen Impedanzverlauf haben.
Es wurden auch Verfahren entwickelt, gewisse Nachteile der Gegenkopplung durch zusätzliche Schaltungen zu umgehen bzw. kompensieren.
Probleme treten immer dann auf, wenn die Phasenverschiebung keinen so glatten Verlauf zeigt wie im obersten Bild. Das trifft auf alle RC-gekoppelten Verstärker zu, die eine obere und untere Frequenzgrenze besitzen. Hier kann bereits bei schwacher Gegenkopplung ein „Phase margin“ von fast Null erreicht werden, was mitunter zur Anhebung tiefer Frequenzen erwünscht ist („bass booster“). Probleme an der oberen Frequenzgrenze gibt es immer beim Einsatz von Ausgangstransformatoren in Röhrenverstärkern, die in der Umgebung der Eigenresonanzen für starke Phasenverschiebungen sorgen. Falls der Trafo bei 20 kHz eine Phasenverschiebung von 180° erzeugt (Phasenrand φ = 0°), wird aus der Gegenkopplung eine Mitkopplung und die Schaltung schwingt. Es gibt nur zwei Gegenmittel:
Im Wirtschaftsleben gibt es eine Regulierung des Angebots durch die Nachfrage an einem Produkt. Bei anfangs hoher Nachfrage an einem neuen Produkt wird auch das Angebot erhöht, aber eine dann eintretende Sättigung des Marktes wirkt in der Weise als negative Rückkopplung, dass die Produktion wegen nachlassender Nachfrage nicht mehr erhöht wird oder auch verringert werden muss (siehe auch Marktgleichgewicht). Das Wirtschaftswachstum kann sowohl in Bezug auf die Nachfrage als auch in Bezug auf die Produktionskapazitäten durch Sättigung als negative Rückkopplung zum Stillstand kommen.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.