Loading AI tools
Abstrakter Datentyp Aus Wikipedia, der freien Enzyklopädie
In der funktionalen Programmierung sind Monaden ein abstrakter Datentyp. Historisch wurde der Begriff Monad auch als Name für X in einer mathematischen Gleichung verwendet. Wesentliche Eigenschaft von Monaden ist die Fähigkeit der Übertragung von Werten und Berechnungen eines „einfacheren“ Typs zu Berechnungen eines „höheren“ Typs, der mittels eines Typkonstruktors aus dem einfacheren Typ hervorgeht, sowie die Verknüpfung mehrerer solcher Übertragungen zu einer einzigen.
Der Hauptnutzen von Monaden ist es, Ein- und Ausgabeoperationen, zustandsbehaftete Berechnungen, Nichtdeterminismus (auch als Iteration über Kollektionen und ihren Kombinationen interpretierbar) und Anderes auszudrücken. Dabei soll die Sprache keine Nebeneffekte einführen.[1]
Das Konzept der Monade stammt aus der Kategorientheorie, einem Zweig der Mathematik, welcher mathematische Objekte mittels Morphismen oder Funktoren vergleicht. Die Wörter Monade oder aber auch Funktor sind wiederum von Konzepten in der Philosophie abgeleitet.
Die Programmiersprache Haskell ist eine funktionale Sprache, die Monaden stark einsetzt und versucht, monadische Kompositionen zu vereinfachen, beispielsweise durch syntaktischen Zucker (u. a. die sogenannte do-Notation).
Die übliche Formulierung einer Monade in der Programmierung hat folgende Komponenten:
Die folgenden Operationen sind typisch für Monaden und können für deren Definition Verwendung finden:
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b
(>=>) :: (a -> m b) -> (b -> m c) -> (a -> m c)
fmap :: (a -> b) -> m a -> m b
join :: m (m a) -> m a
m
für den Typkonstruktor).Diese Operationen müssen folgenden Gesetzen gehorchen:
>>=
(ma >>= f) >>= g == ma >>= ( \a -> ((f a) >>= g) )
>=>
(f >=> g) >=> h == f >=> (g >=> h)
fmap
fmap (f . g) == (fmap f) . (fmap g)
join
ist eine natürliche Transformation von fmap . fmap
auf fmap
(fmap f) . join == join . ((fmap . fmap) f)
fmap
und join
join . join == join . (fmap join) -- das zweite join hat den typ m (m (m a)) -> m (m a)
return
ist eine natürliche Transformation von id
auf fmap
(fmap f) . return == return . f
return
unter >>=
ma >>= return == ma
(return a) >>= f == f a
return
unter >=>
f >=> return == return >=> f == f
return
unter >=>
, in fmap
/join
-Notation join . return == join . (fmap return) == id
In Haskell wird eine Monade über die Operationen return
und (>>=)
definiert:
class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b
Die anderen Operationen lassen sich dann über diese beiden definieren:
(f >=> g) a = f a >>= g
(fmap f) ma = ma >>= (return . f)
join mma = mma >>= id
Eine Monade lässt sich auch über ihre Kleisli-Kategorie definieren:
class Monad m where
return :: a -> m a
(>=>) :: (a -> m b) -> (b -> m c) -> (a -> m c)
Die übrigen Operationen ergeben sich dann wie folgt:
ma >>= f = (id >=> f) ma
fmap f = id >=> (return . f)
join = id >=> id
In der Kategorientheorie wird eine Monade üblicherweise über einen Funktor fmap
sowie zwei natürliche Transformationen return
und join
definiert:
class Monad m where
fmap :: (a -> b) -> m a -> m b
return :: a -> m a
join :: m (m a) -> m a
Die übrigen Operationen lassen sich dann wie folgt realisieren:
ma >>= f = (join . (fmap f)) ma
f >=> g = join . (fmap g) . f
Jede Monade ist auch ein Applikativer Funktor und mithin auch ein Funktor. Umgekehrt gilt das nicht.
Diese Eigenschaft fand sich aus historischen Gründen nicht explizit in Haskells Standardbibliothek, der Glasgow Haskell Compiler hat dies jedoch mit Version 7.10 eingeführt.[2]
Besonders deutlich wird diese Beziehung auch, vergleicht man die kategorientheoretische Definition mit der Funktor-Klasse in Haskell:
class Functor f where
fmap :: (a -> b) -> f a -> f b
Dabei muss fmap
ebenfalls die Kompatibilitätsbedingung mit der Komposition (.
) erfüllen.
Container wie Listen, Mengen, Multimengen stellen Monaden dar, deren Bindeoperation die übergebene Funktion auf alle Elemente anwendet und die dabei erhaltenen Ergebnisse vereinigt. Die Vereinigungsoperation ist dabei jeweils Listenverkettung, Vereinigungsmengenbildung bzw. Bildung der Multimengenvereinigung. Die Einheitsfunktion ergibt Einermengen und -listen.
Hier als Beispiel die Monade für verkettete Listen. Das Konzept der Instanz für Listen ist es, eine Liste einzulesen, dann jedes Element an die Funktion zu übergeben und die Ergebnisse zu verbinden. Hier eine Beispielimplementation in Haskell:
-- Hier nochmal zur Erinnerung, der Listentyp ist folgendermaßen definiert:
data [a] = [] | a:[a]
-- Als syntaktischer Zucker kann [a,b,c] für a:b:c:[] verwendet werden.
instance Monad [] where
--return :: a -> [a]
return a = [a] -- Per Definition eine Liste mit einem Element zurückgeben
--(>>=) :: [a] -> (a -> [b]) -> [b]
liste >>= f = concat zwischenergebnis where -- Die einzelnen Teillisten zusammenfügen
zwischenergebnis :: [[b]]
zwischenergebnis = map f liste -- Die Funktion auf die Liste abbilden
Der Typkonstruktor bildet hier einen Typ auf einen Vektorraum ab, bei dem als (Namensgeber für eine) Basis dient, und dessen Elemente beispielsweise als Funktionen modelliert werden. Die Bindeoperation hat den Typ . Durch Vertauschen der Argumente erhält man den Typ , an dem man die Semantik erkennen kann: die gegebene Funktion, die auf den Basiselementen definiert ist, wird zu einer vollen linearen Abbildung erweitert. Die Einheitsfunktion bildet das Basiselement (welches in dieser Modellierung noch kein „richtiger“ Vektor ist) auf den entsprechenden Basisvektor ab.
Bei zustandsbehafteten Aktionen dient die Bindeoperation der Verwirklichung der Hintereinanderausführung. Die Einheitsfunktion erstellt eine Aktion, die nichts tut und ein festes Resultat zurückgibt.
Das Konzept ist dabei recht natürlich. Wenn man in einer rein funktionalen Programmiersprache einen veränderlichen Status übergeben will, dann macht man das in der Regel auf folgende Weise, hier am Beispiel einer Zählerfunktion:
-- Den Zähler hochzählen und den alten Zähler zurückgeben
hochzählen :: Int -> Int -> (Int,Int)
hochzählen schrittweite zählerstand = (zählerstand,neuerZählerstand) where ...
Das Grundprinzip ist, dass man als Parameter den alten Status anhängt und den neuen mit dem Rückgabewert zusammen zurückgibt. Um sich Arbeit zu ersparen, kann man dieses Muster einfach in einen neuen Typen verpacken, der Parameter s
des Types ist der Typ des Status, a
ist der Parameter des Rückgabewertes:
data Status s a = Status (s -> (a,s))
-- Beispiel:
hochzählen :: Int -> Status Int Int
hochzählen schrittweite = Status $ \zählerstand -> (zählerstand,zählerstand+schrittweite)
Was man jetzt noch braucht, sind ein paar Funktionen, die den Status manipulieren können. Hier zum Beispiel eine Funktion, die den Status auf einen neuen setzt, und eine, die ihn ausliest:
setStatus :: s -> Status s ()
setStatus s = Status $ \_ -> ((),s) -- Der alte Status wird ignoriert und durch den neuen ersetzt. Rückgabewert, da unnötig, ().
getStatus :: Status s s
getStatus = Status $ \s -> (s,s) -- Dupliziere den Status in den Rückgabewert.
Dies ist schon fast alles, was nötig ist. Das einzige, was noch fehlt, ist die Möglichkeit mehrere statusverändernde Aktionen zu kombinieren, hier sind Monaden das Werkzeug der Wahl:
instance Monad (Status s) where -- Die Typvariable s ist irrelevant für die Definition
--return :: a -> Status s a
return a = Status $ \s -> (a,s) -- Status bleibt unverändert
--(>>=) :: Status s a -> (a -> Status s b) -> Status s b
(Status aktion1) >>= f = Status $ \s -> aktion2 zwischenstatus where -- Status aus aktion1 in aktion2 einspeisen.
(rückgabe1,zwischenstatus) = aktion1 s -- aktion1 ausführen
Status aktion2 = f rückgabe1 -- Rückgabewert aus aktion1 in f einspeisen
Mit diesen Funktionen und dem syntaktischen Zucker der do-Notation (der die monadischen Operationen vor uns versteckt) lässt sich das Beispiel dann folgendermaßen formulieren:
hochzählen :: Int -> Status (Int,Int)
hochzählen schrittweite = do zählerstand <- getStatus -- Zählerstand ermitteln
setStatus (zählerstand + schrittweite) -- Zähler setzen
return zählerstand -- alten Zählerstand zurückgeben
-- Hier entzuckert
hochzählen schrittweite = getStatus >>= \zählerstand ->
setStatus (zählerstand + schrittweite) >>= \_ ->
return zählerstand
LINQ-Abfrageausdrücke in C# sind direkt inspiriert von Haskells do
-Notation.[3] Ein Analogon zur Typklasse Monad
ist in C# jedoch nicht ausdrückbar; der Compiler übersetzt LINQ-Abfrage-Ausdrücke blind in Aufrufe von Methoden mit festgelegten Namen. Diese sind Select
und SelectMany
. Auch benutzerdefinierte Klassen können also mittels LINQ-Abfrageausdrücken angesprochen werden, wenn diese Methoden mit entsprechenden Namen zur Verfügung stellen.
Dieselbe Strategie verfolgt Scala im Fall von for
-Comprehensions.[4] Die Methoden heißen da map
und flatMap
.
In der Standardbibliothek von Java 8 sind mindestens zwei Monaden vorhanden, die derselben Namenskonvention gehorchen: die Schnittstellen Optional
und Stream
definieren Methoden namens map
, flatMap
und of
.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.