Loading AI tools
Aus Wikipedia, der freien Enzyklopädie
Die Möbius-Inversion oder auch Möbiussche Umkehrformel geht auf August Ferdinand Möbius zurück und erlaubt es, eine zahlentheoretische Funktion aus ihrer summatorischen Funktion zu rekonstruieren.
Gegeben seien eine zahlentheoretische Funktion
und ihre summatorische Funktion
Dann gilt für jede natürliche Zahl
wobei die Möbiusfunktion auf mit Werten in bezeichnet.
Beim Nachweis der Umkehrformel wird vom Zielbereich der zahlentheoretischen Funktionen lediglich benutzt, dass eine abelsche Gruppe ist. Für multiplikativ notierte abelsche Gruppen erhält die Möbiussche Umkehrformel also die folgende Form:[1]
Gegeben seien eine zahlentheoretische Funktion
und ihre „summatorische“ Funktion
Dann gilt für jede natürliche Zahl
wobei die Möbiusfunktion auf mit Werten in bezeichnet.
Diese Form liefert mit für das Kreisteilungspolynom eine explizite Definition, allerdings im (gebrochen-)rationalen Funktionenkörper , also im Quotientenkörper der Polynomalgebra . Dass und sogar , erfordert weitere, gleichwohl einfache Argumente.[2]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.