Lissajous-Orbit
quasi-periodische Flugbahn um einen der instabilen Lagrange-Punkte als Lösung des eingeschränkten Dreikörperproblems Aus Wikipedia, der freien Enzyklopädie
In der Raumflugmechanik ist der Lissajous-Orbit, [ ], benannt nach Jules Antoine Lissajous, eine quasi-periodische Flugbahn um einen der instabilen Lagrange-Punkte L1 bis L3 als Lösung des eingeschränkten Dreikörperproblems.

Während Ljapunow-Orbits um einen Lagrange-Punkt in der Bahnebene der beiden Hauptkörper liegen, enthalten Lissajous-Orbits auch Komponenten senkrecht dazu. Die Frequenzverhältnisse der Komponenten sind nahezu rational, sodass die Bahn eine Lissajous-Figur bildet. Halo-Orbits beinhalten ebenfalls Komponenten senkrecht zur Bahnebene, aber das Frequenzverhältnis ist (nahezu) eins.[1]
Literatur
- W. S. Koon, M. W. Lo, J. E. Marsden, S. D. Ross: Dynamical Systems, the Three-Body Problem, and Space Mission Design. 2006 (englisch, caltech.edu).
Einzelnachweise
Wikiwand - on
Seamless Wikipedia browsing. On steroids.