Loading AI tools
Aus Wikipedia, der freien Enzyklopädie
Eine Homotopieäquivalenz ist ein zentraler Begriff im mathematischen Teilgebiet Topologie: eine stetige Abbildung, die eine "stetige Umkehrabbildung bis auf Homotopie" besitzt.
Zwei Räume heißen homotopieäquivalent, wenn es eine Homotopieäquivalenz zwischen ihnen gibt. (Man sagt dann auch, die beiden Räume haben denselben Homotopietyp.) Eine Homotopieäquivalenz definiert eine schwächere Äquivalenzrelation als ein Homöomorphismus. Die Topologie behandelt eigentlich Eigenschaften, die unter Homöomorphismen invariant sind, viele solcher topologischen Invarianten bleiben aber auch unter Homotopieäquivalenz erhalten.
Während man sich einen Homöomorphismus als Dehnen, Stauchen, Verbiegen, Verzerren, Verdrillen (aber nicht Zerschneiden) vorstellt, ist bei Homotopieäquivalenzen anschaulich gesprochen auch das Aufdicken und Zusammenquetschen zulässig.
Eine stetige Abbildung zwischen topologischen Räumen und ist eine Homotopieäquivalenz, wenn es eine stetige Abbildung gibt, so dass die Verknüpfungen und jeweils homotop zu den Identitätsabbildungen von bzw. sind. Die Abbildung heißt Homotopie-Inverse von , sie ist i. A. nicht eindeutig bestimmt.
Zwei topologische Räume und heißen homotopieäquivalent, wenn es eine Homotopieäquivalenz gibt.
Eine Invariante topologischer Räume heißt Homotopieinvariante, wenn homotopie-äquivalente Räume dieselbe Invariante haben müssen. Beispiele von Homotopieinvarianten sind Homotopiegruppen, Homologiegruppen und verallgemeinerte Homologietheorien, oder als numerische Invariante zum Beispiel die Euler-Charakteristik und die Überdeckungsdimension. Ein Beispiel einer topologischen Invariante, die keine Homotopieinvariante ist, ist die Reidemeister-Torsion.
Seien und topologische Räume, und , und sei
eine stetige Abbildung mit . Dann hat man für alle n ≥ 0 einen Homomorphismus der Homotopiegruppen
heißt schwache Homotopieäquivalenz wenn alle Isomorphismen sind. Jede Homotopieäquivalenz ist insbesondere eine schwache Homotopieäquivalenz.
Zwei topologische Räume und heißen schwach homotopieäquivalent, wenn es eine schwache Homotopieäquivalenz gibt.
Eine schwache Homotopieäquivalenz induziert Isomorphismen
der Homologie- und Kohomologiegruppen für alle Koeffizientengruppen .[1]
J. H. C. Whitehead bewies 1949 folgenden Satz:
Es trifft jedoch nicht zu, dass es zwischen Räumen mit isomorphen Homotopiegruppen immer eine (schwache) Homotopieäquivalenz gibt. Zum Beispiel sind
zusammenhängende CW-Komplexe mit isomorphen Homotopiegruppen. Falls zum Beispiel ungerade und gerade ist, ist aber
weshalb die beiden Räume nicht (schwach) homotopieäquivalent sein können.
Für topologische Räume, die keine CW-Komplexe sind, gilt der Satz von Whitehead i. A. nicht. Der Raum, den man als Vereinigung von
mit einem und verbindenden Kreisbogen erhält, ist kein CW-Komplex, alle seine Homotopiegruppen sind trivial, die konstante Abbildung auf einen Punkt ist also eine schwache Homotopieäquivalenz. Sie ist aber keine Homotopieäquivalenz, der Raum ist nicht kontrahierbar.
Es gibt noch einen anderen als „Satz von Whitehead“ bezeichneten Satz über schwache Homotopieäquivalenzen:
Zwei Kettenkomplexe und heißen kettenhomotopieäquivalent, wenn es Kettenhomomorphismen
gibt, so dass und kettenhomotop zu den Identitäts-Abbildungen sind.
Eine Kettenhomotopieäquivalenz zwischen zwei Kettenkomplexen induziert einen Isomorphismus der Homologiegruppen.
Eine Homotopieäquivalenz zwischen topologischen Räumen induziert eine Kettenhomotopieäquivalenz ihrer singulären Kettenkomplexe.
Für jede Homologietheorie im Sinne von Eilenberg-Steenrod gilt nach dem Homotopieaxiom:
Daraus folgt insbesondere, dass eine Homotopieäquivalenz einen Isomorphismus für jede (verallgemeinerte) Homologietheorie induziert. (Analog für Kohomologietheorien.)
Aus dem Satz von Hurewicz folgt, dass sogar jede schwache Homotopieäquivalenz einen Isomorphismus der singulären Homologiegruppen (und singulären Kohomologiegruppen) induziert.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.