Loading AI tools
Aus Wikipedia, der freien Enzyklopädie
Das Chern-Simons-Funktional ist in Differentialgeometrie, Topologie und mathematischer Physik von Bedeutung. In der Mathematik wird es zur Definition der Chern-Simons-Invariante von Zusammenhängen auf Prinzipalbündeln über 3-Mannigfaltigkeiten verwendet. Ursprünglich von Chern und Simons in der Theorie der sekundären charakteristischen Klassen eingeführt, hatte es mindestens zwei unerwartete Anwendungen, nämlich zum einen Wittens Einordnung in die Quantenfeldtheorie mit einer physikalisch-geometrischen Interpretation des Jones-Polynoms (Topologische Quantenfeldtheorie)[1][2] und zum anderen die Interpretation der Chern-Simons-Invariante flacher Bündel als komplexwertige Version des hyperbolischen Volumens.
Sei eine einfach zusammenhängende Lie-Gruppe und eine 3-dimensionale, geschlossene, orientierbare Mannigfaltigkeit. Unter diesen Voraussetzungen ist jedes -Prinzipalbündel trivialisierbar, hat also einen Schnitt .
Für einen Zusammenhang
wird sein Chern-Simons-Wirkungsfunktional definiert durch
Diese Definition hängt a priori von der Wahl eines Schnittes ab, für eine Eichtransformation
gilt aber
wobei die Maurer-Cartan-Form ist.
Man erhält also einen modulo wohldefinierten Wert
Sei eine geschlossene, orientierbare 3-Mannigfaltigkeit und . Wir bezeichnen mit die (unendlich-dimensionale) Mannigfaltigkeit aller Zusammenhänge auf -Prinzipalbündeln über .
Dann ist glatt und hat die folgenden Eigenschaften:
Es gilt
wobei die Krümmungsform des Zusammenhangs bezeichnet. Die kritischen Punkte des Chern-Simons-Funktionals sind also gerade die flachen Zusammenhänge. Insbesondere ist das Chern-Simons-Funktional konstant auf den Zusammenhangskomponenten des Modulraums flacher Zusammenhänge auf .
Es sei eine geschlossene, orientierbare hyperbolische 3-Mannigfaltigkeit und ihre Holonomiedarstellung. Dann gilt für das assoziierte flache Bündel
wobei die Riemannsche Chern-Simons-Invariante des Levi-Civita-Zusammenhangs bezeichnet.[3]
Das Bild der Fundamentalklasse unter der Darstellung definiert eine Homologieklasse
in der erweiterten Bloch-Gruppe und der Rogers-Dilogarithmus
bildet auf ab. Das liefert eine explizite Formel für die Chern-Simons-Invariante und einen alternativen Beweis des Satzes von Yoshida.[4][5][6]
Es sei ein flaches Bündel über einer geschlossenen, orientierbaren 3-Mannigfaltigkeit mit Holonomie . Dann bildet der Rogers-Dilogarithmus auf ab, wobei den kanonischen Homomorphismus bezeichnet.[7] Der Wert von kann aus den ptolemäischen Koordinaten der Darstellung zu einer Triangulierung von berechnet werden. (Dieser Ansatz funktioniert auch für 3-Mannigfaltigkeiten mit Rand , solange die Einschränkung von auf die Fundamentalgruppen des Randes unipotent ist.) Implementiert ist dieser Algorithmus im Ptolemy Module als Teil der Software SnapPy.
In beliebigen Dimensionen kann man Chern-Simons-Formen zur Definition sekundärer charakteristischer Klassen verwenden.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.