Loading AI tools
Abbildung für Prinzipalbündel Aus Wikipedia, der freien Enzyklopädie
Der Zusammenhang ist in der Differentialgeometrie ein Konzept, mit dem der Paralleltransport zwischen den Fasern eines Prinzipalbündels erklärt werden kann. In der Physik werden solche Zusammenhänge zur Beschreibung von Feldern bei den Yang-Mills-Theorien verwendet.
Sei ein Prinzipalbündel mit der Strukturgruppe . Die Gruppe wirke durch
Ferner bezeichne die Lie-Algebra der Lie-Gruppe .
Ein Zusammenhang ist dann eine -wertige 1-Form , die -äquivariant ist und deren Einschränkung auf die Fasern mit der Maurer-Cartan-Form übereinstimmt. Es sollen also die beiden folgenden Bedingungen erfüllt sein:
und
Hierbei ist definiert durch . bezeichnet das Differential von . ist die adjungierte Wirkung und ist das sogenannte fundamentale Vektorfeld. Es wird durch
auf definiert.
Die Krümmung einer Zusammenhangsform ist definiert durch
Hierbei ist der Kommutator Lie-Algebra-wertiger Differentialformen durch
und die äußere Ableitung durch
definiert.
Die Krümmungsform ist -invariant und definiert deshalb eine 2-Form auf .
Zusammenhangs- und Krümmungsform genügen der Gleichung
Für eine Zusammenhangsform auf einem -Prinzipalbündel sind die horizontalen Unterräume definiert durch
Die horizontalen Unterräume sind transversal zu den Tangentialräumen der Fasern von , und sie sind -invariant, d. h. für alle .
Aus den horizontalen Unterräumen kann man die Zusammenhangsform zurückgewinnen (nach Identifikation des Tangentialraums der Faser mit ) durch Projektion von entlang auf den Tangentialraum der Faser.
Zu jedem Weg und jedem gibt es einen Weg mit und . (Das folgt aus dem Existenz- und Eindeutigkeitssatz für gewöhnliche Differentialgleichungen.)
Insbesondere hat man zu jedem Weg eine durch
definierte Abbildung
den sogenannten Paralleltransport entlang des Weges .
Zu einem Punkt definiert man die Holonomiegruppe als Untergruppe der Diffeomorphismen der Faser wie folgt. Zu einem geschlossenen Weg mit und einem gibt es eine eindeutige Hochhebung mit und wir definieren . Die Gruppe der für alle ist die Holonomiegruppe.
Für eine riemannsche Mannigfaltigkeit ist das Rahmenbündel ein Prinzipalbündel mit der linearen Gruppe .
Sei die Matrix, die mit Hilfe einer lokalen Basis durch
definiert wird, wobei der Levi-Civita-Zusammenhang ist, so wird durch
die riemannsche Zusammenhangform definiert. Es gilt
Seien lokale Koordinaten in einer Umgebung von und die kanonischen 1-Formen des Rahmenbündels, dann hängt die Krümmungsform des Levi-Civita-Zusammenhangs mit dem Riemannschen Krümmungstensor über die Gleichung zusammen.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.