physikalisches Phänomen Aus Wikipedia, der freien Enzyklopädie
Der Aharonov-Bohm-Effekt ist ein Phänomen in der Quantenmechanik, bei dem geladene Teilchen von einem elektromagnetischen Feld beeinflusst werden, obwohl sie sich ausschließlich im feldfreien Raum bewegen.
Zum Beispiel beeinflusst ein Magnetfeld die Interferenz von Elektronenstrahlen auch dann, wenn diese sich nicht im klassisch zu erwartenden Einflussbereich von befinden. Hauptursache des Effekts ist, dass die Beeinflussung durch das magnetische Vektorpotential erfolgt und nicht durch das Magnetfeld selbst.
Der Aharonov-Bohm-Effekt wurde vom Magazin New Scientist als eines der „Sieben Wunder in der Quantenwelt“ ausgewählt.[1]
Der Effekt wurde nach David Bohm und Yakir Aharonov benannt, die 1959 dazu eine Arbeit veröffentlichten.[2][3]Werner Ehrenberg und Raymond E. Siday konnten den Effekt jedoch bereits1949 voraussagen.[4] Offenbar hat aber Walter Franz den Effekt bereits1939 – also 20Jahre vor Aharonov und Bohm – in einem Seminar der Physikalischen Gesellschaft, Gauverein Ostland in Danzig vorgestellt.[5]
Im Experiment laufen geladene Teilchen (Elektronen) auf verschiedenen Seiten an einem Zylinder vorbei, in dem ein Magnetfeld herrscht.[6] Der Zylinder ist von einer Wand umgeben, die von den Teilchen nicht durchdrungen werden kann; außerhalb ist das Magnetfeld Null. Trotzdem hängt der Ausgang des Experiments davon ab, ob das Magnetfeld ein- oder ausgeschaltet ist, denn das Vektorpotential ist im ersten Fall auch außerhalb des Zylinders vorhanden. Man stelle sich hierbei ein radial verlaufendes Vektorpotential vor. Dessen Rotation und damit das Magnetfeld ist außerhalb des Zylinders Null, dennoch ist das Vektorpotential selbst nirgends Null.
Die Superposition der Wellenfunktionen hinter dem Zylinder ergibt ein Interferenzmuster,[7] das vom Vektorpotential beeinflusst wird, da die Wellenfunktionen auf Wegen rechts und links des Zylinders eine unterschiedliche Phasenverschiebung erhalten.
Klassisch ist ein Effekt also nur dort zu erwarten, wo das Magnetfeld von Null verschieden ist (abgesehen vom elektrischen Feld, das hier unwesentlich ist).
In der Quantenmechanik dagegen beschreibt man das Verhalten des Teilchens durch den Hamilton-Operator:
Manchmal wird aus dem Effekt der Schluss gezogen, dass das Vektorpotential in der Quantenmechanik eine fundamentalere Bedeutung habe als das zugehörige Kraftfeld. Das trifft jedoch nicht das Wesentliche: Letztlich ist der magnetische Fluss entscheidend, der durch ein Kurvenintegral ausgedrückt werden kann:
Der Integrationsweg muss geschlossen sein, was durch den Kreis im Integrationssymbol angedeutet wird, darf sich aber außerhalb des Bereiches mit befinden.
ist das Linienintegral über die geschlossene Kurve identisch mit dem Fluss der magnetischen Flussdichte durch die eingeschlossene Fläche :
Insbesondere zeigt der Satz von Stokes, weswegen die gewählte Eichung des Vektorpotentials irrelevant ist, da das Kurvenintegral über als Flächenintegral über geschrieben werden kann und die Rotation des zur Eichung verwendeten Gradientenfeldes verschwindet.
Man kann den Effekt als Folge der nichttrivialen Topologie des Eichfeldes interpretieren:[10] Wegen des nichteinfach zusammenhängenden Raumes (der Zylinderinnenraum ist "ein Loch im Raum") verschwinden auch die Wegintegrale über geschlossene Kurven nicht (notwendigerweise).
Fachartikel
G.Möllenstedt,WernerBayh:Messung der kontinuierlichen Phasenschiebung von Elektronenwellen im kraftfeldfreien Raum durch das magnetische Vektorpotential einer Luftspule. In: Die Naturwissenschaften. 49. Jahrgang, 1962, S.81 (digizeitschriften.de).
Yoseph Imry, Richard A. Webb: Quantum Interference and the Aharonov-Bohm Effect. In: Scientific American. 260, Nr. 4, 1989, S. 56.
M. Peshkin, A. Tonomura (Hrsg.):The Aharonov-Bohm Effect (=Lecture Notes in Physics. Band340). Springer-Verlag, Berlin/Heidelberg 1989, ISBN 3-540-51567-4, doi:10.1007/BFb0032076 (englisch).
Y. Aharonov, D. Bohm:Significance of Electromagnetic Potentials in the Quantum Theory. In: Physical Review. Band115, Nr.3, 1.August 1959, ISSN0031-899X, S.485–491, doi:10.1103/PhysRev.115.485 (englisch).
Y. Aharonov, D. Bohm:Further Considerations on Electromagnetic Potentials in the Quantum Theory. In: Physical Review. Band123, Nr.4, 15.August 1961, ISSN0031-899X, S.1511–1524, doi:10.1103/PhysRev.123.1511 (englisch).
W Ehrenberg, R E Siday:The Refractive Index in Electron Optics and the Principles of Dynamics. In: Proceedings of the Physical Society. Section B. Band62, Nr.1, 1.Januar 1949, ISSN0370-1301, S.8–21, doi:10.1088/0370-1301/62/1/303 (englisch, Aharonov und Bohm erfuhren erst nach ihrer Veröffentlichung von dieser Arbeit und wiesen in ihrem Aufsatz von 1961 darauf hin.).