Die Bandbreite ist eine Kenngröße in der Signalverarbeitung, die die Breite des Intervalls in einem Frequenzspektrum festlegt, in dem die dominanten Frequenzanteile eines zu übertragenden oder zu speichernden Signals liegen. Die Bandbreite ist durch eine untere und eine obere Grenzfrequenz charakterisiert, wobei je nach Anwendung unterschiedliche Festlegungen der beiden Grenzwerte existieren und somit je nach Zusammenhang unterschiedliche Bandbreiten als Kennwert existieren. Der Begriff dient zur Beschreibung von Signalübertragungssystemen in verschiedenen Bereichen wie der Nachrichtentechnik, Funktechnik oder Akustik.

Festlegungen

Zusammenfassung
Kontext

Jeder Übertragungskanal besitzt – abhängig von seinen physikalischen Eigenschaften – eine untere und eine obere Grenzfrequenz. Die untere Grenzfrequenz kann auch null sein; in diesem Fall spricht man von Basisbandlage, andernfalls von Bandpasslage. Die Betragsdifferenz der beiden Grenzfrequenzwerte wird als Bandbreite bezeichnet. Die Grenzfrequenzen werden entweder in der Einheit Hertz (Hz) und üblicherweise mit f abgekürzt oder mittels der Kreisfrequenz in der Einheit s−1 und als bezeichnet.

Für die Festlegung der Grenzfrequenzen und somit der Bandbreite sind je nach Anwendung und Bezug verschiedene Definitionen gebräuchlich. Diese unterschiedlichen Festlegungen können, bei identischen physikalischen Eigenschaften, zu unterschiedlichen Bandbreitenangaben führen. Im Folgenden sind einige gebräuchliche Festlegungen der Bandbreite beschrieben.

Strikte Bandbegrenzung

Thumb
Betragsfrequenzgang im Basisband mit Bandbreite

Ein Signal ist dann strikt bandbegrenzt, wenn der Betragsfrequenzgang , mit dem Parameter als Kreisfrequenz, außerhalb des Bereichs der Bandbreite gleich 0 ist. Dies ist real nur in Näherung möglich und die Art dieser Bandbreitendefinition dient im Rahmen der Signaltheorie als vereinfachtes Modell.

Bei Basisbandsignalen mit strikter Bandbegrenzung erfolgt die Bandbreitenbegrenzung durch einen idealen Tiefpass. Reelle Signale in Basisbandlage weisen immer negative Frequenzanteile auf, so genanntes Spiegelspektrum, wie beispielhaft in nebenstehender Abbildung am Betragsfrequenzverlauf eines reellwertigen Signals dargestellt. Die Bandbreite ist ohne die negativen Frequenzanteile festgelegt zu:

Thumb
Betragsfrequenzgang in Bandpasslage mit Bandbreite

Bei Signalen in sogenannter Bandpasslage erfolgt die Bandbegrenzung durch einen Bandpassfilter. Signale in Bandpasslage entstehen beispielsweise durch Modulation eines Basisbandsignals, sie treten unter anderem in Zwischenfrequenzstufen in Funkgeräten auf. Durch die Modulation wird die Mittenfrequenz des Basisbandsignals von null auf die Trägerfrequenz verschoben, womit die untere Grenzfrequenz einen positiven Wert aufweist:

Negative Spektralanteile werden, wie im Basisband, nicht zur Bandbreite hinzugerechnet. Zu beachten ist dabei, dass das Spiegelspektrum des reellwertigen Basisbandsignals durch die Frequenzverschiebung bei einer linearen Modulation zu einer Verdopplung der Bandbreite in Bandpasslage führt, da die negativen Frequenzen durch die Modulation in den positiv Spektralbereich verschoben werden:

Die beiden positiven Teilspektren unterhalb und oberhalb um die Mittenfrequenz werden auch als unteres und oberes Seitenband bezeichnet und tragen bei reellwertigen Basisbandsignalen den gleichen Informationsgehalt. Für Basisbandsignale, welche keine negativen Frequenzen aufweisen, dies ist bei einem analytischen Signal der Fall, ist die Bandbreite sowohl im Basisband als auch in Bandpasslage identisch – analytische Signale lassen sich im Basisband nur als komplexes Signal darstellen. Technisch wird diese Eigenschaft verschiedenartig realisiert wie beispielsweise bei der Einseitenbandmodulation.

Bei nichtlinearen Modulationstechniken wie der Frequenzmodulation besteht kein direkter Zusammenhang zwischen der Bandbreite des Basisbandsignals und der benötigten Bandbreite in Bandpasslage. Die Bandbreite wird dabei näherungsweise durch den Frequenzhub in der Carson-Formel ausgedrückt.

3-dB-Bandbreite

Thumb
Leistungsdichtespektrum eines Signals in Basisbandlage mit 3-dB-Bandbreite
Thumb
Leistungsdichtespektrum eines Signals in Bandpasslage mit 3-dB-Bandbreite

In realen Systemen liegen aufgrund der nur endlichen Dämpfungen von Filtern Spektralanteile über das komplette Spektrum verteilt, bei einer strikten Festlegung wäre die Kenngröße der Bandbreite unendlich groß und damit wenig aussagekräftig. Als praktische Kenngröße ist die 3-dB-Bandbreite üblich, die über das Leistungsdichtespektrum um das Betragsmaximum definiert wird. Die Grenzfrequenzen werden bei dem halben maximalen Leistungswert festgelegt, dies entspricht der Halbwertsbreite, was einer Absenkung auf gerundet 3 dB entspricht:

Bei der Grenzfrequenz entspricht dies einer Amplitudenabsenkung um den Faktor .

Die Bandbreite ist damit in Basisbandlage zu

und in Bandpasslage

festgelegt.

Beispielsweise entspricht bei dem System eines Tiefpassfilters (1. Ordnung) die 3-dB-Bandbreite genau der Bandbreite des Filters, sie wird daher auch als 3-dB-Grenzfrequenz bezeichnet.

Bei einem Reihen- oder Parallelschwingkreis bezeichnet die dimensionslose relative Bandbreite das Verhältnis aus der 3-dB-Bandbreite und der Mittenfrequenz :

Die relative Bandbreite ist identisch mit dem Verlustfaktor und reziprok zum Gütefaktor Q.

Carson-Bandbreite

Bei Winkelmodulationen wie der Frequenzmodulation oder der Phasenmodulation findet die nach John Renshaw Carson bezeichnete Carson-Bandbreite Anwendung.[1] Die 10 %-Carson-Bandbreite ist die Bandbreite, die die Spektrallinien umfasst, die 90 % der Leistung des Signals ausmachen; die selten verwendete 1 %-Carson-Bandbreite ist die Bandbreite, in der die Spektrallinien liegen, die 99 % davon ausmachen.

Nyquist-Bandbreite

In der Theorie zur digitalen Signalverarbeitung besitzt das Nyquist-Shannon-Abtasttheorem eine zentrale Stellung. Es besagt, dass sich ein zeitkontinuierliches Signal dann beliebig genau aus der abgetasteten, zeitdiskreten Folge rekonstruieren lässt, wenn die Bandbreite des Signals maximal die halbe Abtastfrequenz beträgt. Dieses Maximum wird als Nyquist-Bandbreite bezeichnet.

Die naive Rekonstruktion als Treppenfunktion ist zwar grob: Die Rechteckimpulse, die zeitlich aneinandergereiht die Treppenfunktion ausmachen, haben als Spektrum die Sinc-Funktion, also unendliche Bandbreite. Aber die Bandbreite innerhalb der beiden ersten Nullstellen der Sinc-Funktion (für positive bzw. negative Frequenzen) ist gerade die Nyquist-Bandbreite. Deren Produkt mit der Abtastperiode beträgt 1, siehe Zeitdauer-Bandbreite-Produkt.

Antennentechnik

Im Bereich der Antennentechnik werden unter anderem relative, d. h. dimensionslose, Bandbreitenangaben verwendet.[2] Für Schmalbandantennen, dies sind Antennen deren Betragsfrequenzgang näherungsweise konstant verläuft, wird eine prozentuale Bandbreitenangabe verwendet:

Der theoretische Maximalwert der prozentualen Bandbreite beträgt 200 %, wenn die untere Grenzfrequenz null ist.

Für Breitbandantennen, deren Betragsfrequenzgang nicht konstant ist, werden als relative Bandbreitenangabe die beiden Grenzfrequenzen der Antenne in Bezug gesetzt und in der Form ausgedrückt:

Rechtliche Bandbreitenfestlegungen

Belegte Bandbreite

Besonders in der Frequenzverwaltung ist der Begriff der belegten Bandbreite üblich, welche einen Frequenzbereich festlegt, der durch eine Funkaussendung benutzt wird. Die im rechtlichen Bezug zu sehende Definition entsprechend Artikel 1.153 der Vollzugsordnung für den Funkdienst (VO Funk) der Internationalen Fernmeldeunion (ITU) erfolgt als Integration über die spektrale Leistungsdichte, wobei 99,0 % der in Summe ausgestrahlten Leistung innerhalb der Bandbreite zwischen unterer und oberer Frequenzgrenze liegt. Der Rest von 1,0 % (2 · 0,5 %) der ausgestrahlten Leistung liegt außerhalb dieses festgelegten Bandes.[3][4]

Erforderliche Bandbreite

Die im rechtlichen Bezug zu sehende Definition der erforderlichen Bandbreite entsprechend Artikel 1.152 der Vollzugsordnung für den Funkdienst (VO Funk) der Internationalen Fernmeldeunion (ITU) ist jene Bandbreite die für eine Sendeart bei gegebener Geschwindigkeit gerade ausreicht um die Übertragung der Nachricht sicherzustellen.[5]

Beispiele von Bandbreiten

Zusammenfassung
Kontext

Das Übertragungssystem eines Telefons weist in erster Näherung eine untere Grenzfrequenz von 300 Hz und eine obere Grenzfrequenz von 3400 Hz auf, was einer Bandbreite von 3100 Hz entspricht und für eine verständliche Sprachübermittlung ausreicht. Frequenzanteile in der Sprache, welche unter- bzw. oberhalb der Grenzfrequenz liegen, werden in einem Telefonsystem mittels Bandbegrenzung unterdrückt und nicht übertragen.

Weitere Informationen Anwendung, ungefähre Bandbreite ...
Anwendung ungefähre Bandbreite
Kernspinresonanzspektroskopie 0,1 Hz
Längstwelle 1 Hz
Elektrokardiogramm (EKG) 40 Hz
Telefon, Slow Scan Television 3,1 kHz
AM-Rundfunk (Audio) 4,5 kHz
AM-Rundfunksignal (Sendekanalbreite) 9 kHz
analoger UKW-Rundfunk (Audio, mono) 15 kHz
Audio-CD 22 kHz
Mobilfunk (GSM), Signal in Bandpasslage 200 kHz
UKW-Rundfunksignal inkl. Zusatzdienste, in Bandpasslage 300 kHz
analoges AM-Fernsehsignal inkl. Ton 7 MHz
digitales DVB-T-Multiplexsignal (enthält meist vier Programme)
WLAN nach IEEE-802.11 a/b, Bandpasslage 22 MHz
Front Side Bus im Computer 400 MHz
Ultrabreitband > 500 MHz
Glasfaser-Ethernet bis zu 50 GHz
Schließen

Literatur

Einzelnachweise

Siehe auch

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.