Der Umfang einer ebenen Figur, die durch eine Linie begrenzt ist, bezeichnet die Länge ihrer Begrenzungslinie.
Die Formel für den Kreisumfang lautet:
-
- steht dabei für den Umfang,
- für den Radius des Kreises,
- für die Kreiszahl mit dem Wert 3,14159265… und
- für den Kreisdurchmesser.
Der Umfang eines Vielecks ist die Summe seiner Seitenlängen.
Wird die Begrenzungslinie der Figur durch eine geschlossene stückweise glatte Parameterkurve beschrieben mit
- ,
so lässt sich ihr Umfang über das folgende Integral berechnen:
- . (siehe Länge (Mathematik))
Literatur
- Karl Barth: Die technischen Hilfswissenschaften: Mathematik, Geometrie und Chemie. Oldenbourg, S. 95–96
Weblinks
- Eric W. Weisstein: Perimeter. In: MathWorld (englisch).
- Umfang und Flächen elementarer Figuren
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.