Loading AI tools
Lager-Bauart im Maschinen- und Gerätebau Aus Wikipedia, der freien Enzyklopädie
Das Gleitlager ist neben dem Wälzlager die im Maschinen- und Gerätebau am häufigsten gebrauchte Lagerbauart.
Gleitlager sind Maschinenelemente, die dazu dienen, die Reibung zwischen zwei sich gegeneinander bewegenden Oberflächen zu verringern. Häufig unterstützen und führen sie eine Welle oder Achse, die sich relativ zum Lagergehäuse dreht oder verschiebt.
Wirkprinzipien eines Gleitlagers:
Man unterscheidet zwischen ungeschmierten bzw. selbstschmierenden Gleitlagern, hydrodynamischen Gleitlagern und hydrostatischen Gleitlagern.
In ungeschmierten oder selbstschmierenden Gleitlagern werden reibungsarme Werkstoffpaarungen verwendet. Mitunter hat einer der beiden Partner eine sogenannte „Selbstschmierungs-Eigenschaft“ (zum Beispiel ein mit Blei oder Zinn legierter Werkstoff, ein Kunststoff wie PTFE oder Technische Keramik). Der zweite Partner (bei Radiallagern in der Regel die Welle) ist meist aus Stahl.
Bei hydrodynamischen Gleitlagern „schwimmt“ die Welle auf dem Schmierfilm, was die Reibung auf ein Minimum reduziert. Beim Anlauf der Welle entsteht zunächst Mischreibung. Mit zunehmender Drehzahl wird der Schmierstoff durch die Bewegung der Welle in den Spalt zwischen Welle und Lagerbuchse gezogen. Die Geometrie des Lagers ist oft so gestaltet, dass sie an einer Seite enger ist. Dies führt dazu, dass der Schmierstoff komprimiert wird und einen Druckaufbau erfährt. Der Druck im Schmierstoff hebt die Welle an und trennt sie von der Lagerbuchse, wodurch ein tragender Schmierfilm entsteht und die Welle auf dem Schmierfilm „schwimmt“.
Heute werden auch hydrodynamische Gleitlager mit spiralförmiger Nutung (engl. spiral groove bearing) eingesetzt, bei welchen das Schmiermittel bei rotierender Welle durch die Nut von außen zugeführt und ins Zentrum des Lagers befördert wird (Spiralrillenlager). Flach geätzte oder mit dem Laser herausgearbeitete Nuten sind häufig ausreichend. Eingesetzt wird die spiralförmige Nutung etwa bei besonders leise laufenden Computerlüftern. Schnelllaufende Lager bzw. dort, wo kein Flüssigkeiten eingesetzt werden dürfen, werden auch in luftgeschmierter Ausführung angeboten.
Ein hydrostatisches Gleitlager nutzt unter Druck zugeführtes Fluid (etwa durch eine Ölpumpe), um einen Schmierfilm zwischen den Lagerflächen zu erzeugen. Der Schmierfilm verhindert den Kontakt zwischen bewegten Elementen und den Lagerflächen und ermöglicht idealerweise eine nahezu reibungsfreie Bewegung. Im Gegensatz zum hydrodynamischen Gleitlager, bei dem der Schmierfilm durch die Relativbewegung der Welle selbst erzeugt wird, ist das hydrostatische Lager unabhängig von Bewegung und Belastung des Lagers.
Folgende Reibungszustände sind möglich: Festkörperreibung, Mischreibung oder Flüssigkeitsreibung.
Festkörperreibung, auch Trockenreibung genannt, tritt auf, wenn zwei feste Oberflächen direkt aufeinander gleiten, ohne dass ein Schmiermittel zwischen ihnen vorhanden ist. In einem Gleitlager, das unter Bedingungen der Festkörperreibung arbeitet, ist kein flüssiger oder gasförmiger Schmierfilm vorhanden, um die Reibung zwischen der Welle und dem Lager zu reduzieren.
Bei Gleitlagern, die für Betriebszustände mit Festkörperreibung ausgelegt sind, werden oft Materialien mit geringer Reibung und hoher Verschleißfestigkeit eingesetzt, wie:
Festkörperreibung in Gleitlagern findet Anwendung, wenn:
Um die negativen Auswirkungen der Festkörperreibung zu minimieren, ist eine sorgfältige Materialauswahl und Konstruktion des Gleitlagers erforderlich. In manchen Fällen werden auch spezielle Oberflächenbehandlungen oder Beschichtungen angewendet, um die Lebensdauer des Lagers unter diesen anspruchsvollen Bedingungen zu verlängern.
Mischreibung in Gleitlagern bezeichnet einen Zustand, bei dem zwischen den Gleitflächen der Welle und des Lagers sowohl Festkörperkontakt als auch hydrodynamische Schmierfilmbedingungen gleichzeitig auftreten. Dieser Zustand findet sich häufig beim Anfahren oder Anhalten einer Maschine und bei niedrigen Drehzahlen, wenn der hydrodynamische Schmierfilm noch nicht vollständig ausgebildet ist oder gerade zusammenbricht. Mittels Stribeck-Kurve wird dies erklärt.
Flüssigkeitsreibung, auch hydrodynamische Reibung genannt, tritt bei Gleitlagern auf, wenn ein kontinuierlicher Schmierfilm zwischen der Welle und des Lagers vorhanden ist, der beide Oberflächen vollständig voneinander trennt. Dieser Zustand ermöglicht eine reibungsarme Bewegung der Welle innerhalb des Lagers.
Flüssigkeitsreibung bei Gleitlagern ist der ideale Zustand für einen effizienten und langlebigen Betrieb. Die Herausforderungen bestehen darin, die Betriebsbedingungen so zu gestalten und aufrechtzuerhalten, dass dieser Zustand während des größten Teils des Betriebszyklus der Maschine gewährleistet ist.
Das typische Gleitlager ist ein Radiallager für die radiale Lagerung einer Welle, deren Laufflächen gehärtet sind.
Die Welle wird von der Lagerbuchse umgriffen, deren Werkstoff ganz verschieden sein kann, zum Beispiel:
Der Werkstoff der Buchse wird „weicher“ als der der Welle gewählt, damit der Verschleiß vorwiegend dort auftritt. Ihre Auswechslung ist einfacher und billiger als die der Welle. Sie wird oft zwei-geteilt hergestellt: zwei Halbschalen, die radial von der Welle entfernt werden können.
Graphit (Kohlenstoff) ist als Lagerwerkstoff geeignet, da sein Abrieb selbstschmierend wirkt. Die Kohlenstoffmodifikation Graphit besitzt Kristallebenen, die leicht aufeinander gleiten können. Graphit-Lager sind zudem vorteilhaft, wenn elektrische Ströme über Lagerstellen übertragen werden müssen, was bei anderen Lagern – sowohl Gleitlagern als auch insbesondere Kugellagern – vermieden werden sollte, da Ströme durch Kontaktstellen unterschiedlicher Metalllegierungen Materialabtrag mit sich bringen.
Zu beachten ist, dass bei diesen Lagern bei höherer Belastung und damit steigender Temperatur der Reibkoeffizient deutlich ansteigt. Dennoch sind sie für höhere Temperaturen geeignet, bei denen geschmierte Lager bereits versagen.
Ein Beispiel für ein Graphitlager ist das Axiallager zur Betätigung der Kupplung in älteren Kraftfahrzeugen.
Vergleiche auch Schleifkontakt.
Als keramischer Werkstoff wird zum Beispiel Siliciumcarbid in Pumpen verwendet, in Großpumpen auch faserverstärkt. Die Gleitlager liegen im Pumpengehäuse und werden mit der geförderten Flüssigkeit geschmiert. Die Korrosionsbeständigkeit und der durch die Härte bedingte extrem niedrige Verschleiß sind die großen Vorteile dieser Lager. Probleme ergeben sich jedoch beim Trockenlauf der Pumpen.
Bereits im Jahre 1869 bezeichnete Daniel Spill, ein Partner von Alexander Parkes, den Kunststoff Xylonite als geeignet, um daraus „Gears and Friction Wheels“ (Zahnräder und Reibräder) sowie „Bearings for Machinery“, also Gleitlager, herzustellen.[1]
Moderne Kunststoffgleitlager bestehen aus speziellen, selbstschmierenden Kunststoffen. Sie eignen sich für niedrige bis mittlere Lagerkräfte. Im Gegensatz zu anderen Materialien ist bei ihnen die Gefahr des „Festfressens“ äußerst klein. Kunststoffgleitlager zählen somit zu den wichtigsten Vertretern bei den schmierungs- und wartungsfreien Gleitlagern. Zur Verlängerung der Lebensdauer von Gleitlagern kann eine besondere Kunststoffbeschichtung verwendet werden.[2]
Es handelt sich hierbei um sogenannte Verbundwerkstoffe, die aus Basispolymer, Verstärkungsstoffen (zum Beispiel: Fasern und Füllstoffen) und aus eingebetteten Festschmierstoffen oder Ölen bestehen. Während des Betriebs gelangen diese Schmierstoffe durch Mikroverschleiß ständig an die Oberfläche und senken so Reibung und Verschleiß der Lager. Der verwendete Kunststoff ist meistens PTFE (Polytetrafluorethylen) wegen seines besonders geringen Reibungskoeffizienten gegen andere Stoffe (so auch gegen Stahl).
Generell gibt es Kunststoffgleitlager in vielen verschiedenen Varianten, je nach gewünschter Eigenschaft. In der Regel sind sie schmiermittelfrei, korrosionsbeständig, leicht und schmutzunempfindlich. Für spezielle Einsatzfälle haben diverse Hersteller Sondermaterialien im Angebot, wie elektrisch-leitende oder lebensmitteltaugliche (FDA-konforme) Lager.
Bei geringerwertigen Lagern, bei denen beide Partner aus Thermoplast bestehen, ist PTFE in den dafür erforderlichen Schmierstoffen enthalten.
Aus Bronze oder Eisen gesinterte Lagerbuchsen sind weniger dicht als massive. In ihren Poren kann sich der Schmierstoff einlagern (Mischreibung). Verharzter Schmierstoff kann durch Erhitzen aus den Poren entfernt werden. Danach werden die Buchsen neu mit Öl getränkt.
Sinterlager befinden sich in vielen kleinen Elektromotoren, z. B. von Mabuchi Motor sowie die Antriebe von PC-Lüftern.
Auch langsam laufende Wellen in einfachen, robusten Konstruktionen, bei denen es nicht auf präzise Führung ankommt, werden als Sinterlager ausgeführt; z. B. die Antriebswellen von kleinen Betonmischern.
Auch Gleitbuchsen in Linearlagern werden oft als Sinterlager ausgeführt.
Lagerbuchsen aus weitgehend einkristallinem Rubin werden besonders in kleinen mechanischen Uhren, Instrumenten und Waagen eingesetzt. Sie arbeiten gegen Stahl und werden bei Uhren geschmiert, bei Waagen jedoch nicht. Steine werden bei höherwertigen Uhren in größerer Zahl zumindest bei der Unruh-Lagerung eingesetzt.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.