Loading AI tools
gemeinsames Stromnetz in Europa Aus Wikipedia, der freien Enzyklopädie
Das europäische Verbundsystem (EV) ist ein europaweites engmaschiges Stromnetz aus Hoch- und Höchstspannungs-Leitungen zur Verteilung von elektrischer Energie. Es existieren zwar in Europa aufgrund der räumlichen Aufteilung mehrere voneinander getrennte Verbundsysteme, im Allgemeinen wird unter dem europäischen Verbundsystem das zentraleuropäische Verbundnetz jener Länder verstanden, welche die ehemalige Union for the Co-ordination of Transmission of Electricity (UCTE) umfassen („UCTE-Verbundnetz“).
Das europäische Verbundsystem wird mit Dreiphasenwechselstrom in Form der Drehstrom-Hochspannungs-Übertragung betrieben, der Austausch von elektrischer Energie erfolgt auf Transportnetzebene mit Hochspannung von 220 kV und 400 kV zwischen den verschiedenen Netzbetreibern. Der Vorteil eines solchen Netzes ist, dass Schwankungen im Verbrauch und in der Erzeugung erheblich besser ausgeglichen werden können, als wenn jedes Land oder Region ein alleinstehendes Stromversorgungsnetz hätte. Die Größe der ausgleichbaren Schwankungen ist dabei durch die Transportkapazität der Verbindungsleitungen begrenzt.
Neben dem kontinentaleuropäischen Verbundnetz (ehemals UCTE) existieren in Europa das Verbundnetz der nordeuropäischen Staaten NORDEL und in Großbritannien das UKTSOA. Die räumlich größte Ausdehnung weist das russische Verbundsystem IPS/UPS auf. Es erstreckt sich von Estland, Lettland und Litauen bis in den asiatischen Raum. Alle genannten Netze sind mittels Hochspannungs-Gleichstrom-Übertragung (HGÜ) miteinander verbunden. Nur Inseln wie Island und Zypern besitzen ein eigenes Inselnetz ohne Anschluss an das Europäische Verbundsystem.
Im europäischen Verbundsystem sind darüber hinaus auch einige Regionen und Länder außerhalb Europas integriert, neben der Türkei die nordafrikanischen Länder Marokko, Algerien, Tunesien und Westsahara. Die nordafrikanischen Länder sind technisch über eine Wechselspannungsverbindung zwischen Spanien und Marokko synchron gekoppelt, aufgrund der vergleichsweise kleinen Leistung ist dies technisch möglich, und die regelungstechnische Ausstattung in den größeren Wärmekraftwerken in den nordafrikanischen Ländern ist so gestaltet, dass der Synchronbetrieb mit Europa gewährleistet ist. Seit dem 15. April 2015 ist das türkische Stromnetz synchron mit dem europäischen Verbundnetz verbunden.[1][2] Die erste Synchronisierung fand am 18. September 2010 statt; danach wurde in drei Phasen schrittweise die volle Synchronisierung verwirklicht. Die Türkei ist mit Stand 2016 mit drei 400-kV-Transportleitungen verbunden; zwei Leitungen führen nach Bulgarien, eine Leitung nach Griechenland.[3] Die Synchronisation des ukrainischen wie des moldauischen Netzes, die bis dahin mit dem IPS/UPS synchronisiert waren, war ursprünglich für 2023 geplant, wurde jedoch nach dem russischen Überfall im Februar 2022 notdürftig bis zum 16. März 2022 vollzogen.[4][5]
Dass Großbritannien und die nordeuropäischen Staaten eigene und mit dem kontinentaleuropäischen Verbundnetz nicht synchrone Verbundnetze haben, hat technische Gründe. Unter anderem lässt sich Dreiphasenwechselstrom größerer Leistung nicht über die notwendigen längeren Seekabel übertragen. Zu dem elektrischen Energieaustausch muss Gleichstrom in Form der Hochspannungs-Gleichstrom-Übertragung (HGÜ) verwendet werden, womit keine Synchronität zwischen den Verbundnetzen erforderlich ist. Beispiele solcher Seekabelverbindungen zwischen dem UCTE-Netz und Großbritannien und den nordeuropäischen Staaten sind die HGÜ Konti-Skan, HGÜ Cross-Skagerrak, BritNed oder die NorNed.
Ein kleines, eigenständiges Verbundsystem, das aus historischen Gründen mit einer Netzfrequenz von 16,7 Hz exklusiv für den Bahnbetrieb verwendet wird, existiert zwischen den Bahnstromnetzen Deutschlands, Österreichs und der Schweiz. In anderen Ländern wird der elektrische Strom für den Bahnbetrieb direkt dem allgemeinen Verbundnetz entnommen. Dies ist möglich, da die dortigen Eisenbahnen entweder mit Gleichstrom oder Wechselstrom von 50 Hz betrieben werden, welcher mit sehr viel weniger technischem Aufwand aus dem Verbundnetz umzuformen ist.
Jedes Verbundsystem ist dadurch gekennzeichnet, dass darin alle Erzeuger wie Kraftwerke synchron, also mit identischer Netzfrequenz und entsprechender Phasenlage, arbeiten. Dadurch können sie in Umspannwerken über Leistungstransformatoren direkt elektrisch zusammengeschaltet werden. Wäre bei Wechselspannung die Frequenz bzw. Phasenlage nicht bei allen Erzeugern exakt gleich, wären Kurzschlüsse die Folge. Benachbarte Verbundnetze können zwar mit nominal gleicher Netzfrequenz von beispielsweise 50 Hz ausgestattet sein, durch laufende geringe Frequenzschwankungen sind die aktuellen Werte in beiden Netzen praktisch nie identisch und phasengleich, womit kein direkter elektrischer Verbund hergestellt werden kann.
Jedes Verbundsystem ist in mehrere Regelzonen aufgeteilt. Deutschland umfasst beispielsweise vier Regelzonen, Österreich[6] und die Schweiz[7] je eine Regelzone mit je einem Übertragungsnetzbetreiber, welcher als Regelzonenführer auftritt. Aufgabe der Regelzonenführung ist unter anderem, die von den Netzbetreibern vorzuhaltende Regelleistung zu koordinieren. Der Grund liegt darin, dass elektrische Stromnetze, und auch Verbundnetze, elektrische Energie nicht speichern können. Es muss zu jedem Zeitpunkt die erzeugte elektrische Leistung dem nachgefragten elektrischen Verbrauch entsprechen, andernfalls weicht die Netzfrequenz im gesamten Verbundnetz nach oben (zu geringe Nachfrage), bzw. nach unten (zu hohe Nachfrage) ab.
Diese Abweichungen sind auf der Transportnetzebene durch entsprechende Leistungsflüsse als Ausgleich gekennzeichnet und können in Extremfällen zur Überlastung der Leitungen und Transformatoren führen. Kommt es daher zu einer Abweichung, die bestimmte Toleranzschwellen über- oder unterschreitet, muss dies im Rahmen der Netzregelung und über Regelleistung ausgeglichen werden, wobei zwischen den Regelzonen auch elektrische Energie zwecks Bilanzausgleich ausgetauscht werden kann. Damit kann in einem Verbundnetz die vorgehaltene Regelleistung geringer als in kleinen Inselnetzen sein. Im Jahr 2010 wurden beispielsweise im Mittel im gesamten UCTE-Verbundnetz ca. 3 GW Primärregelleistung vorgehalten, der Frequenzgradient der Regelleistung beträgt im europäischen Verbundsystem ca. 20 GW pro Hz Abweichung der Netzfrequenz. Kommt es aufgrund von Bilanzdefiziten zu einer starken Abweichung der Netzfrequenz von der Nennfrequenz, wie beispielsweise bei Unterfrequenz, werden Notmaßnahmen ergriffen, welche in Extremfällen neben Stromausfällen zum temporären Auftrennen des Verbundnetzes in mehrere eigenständige Teilnetze führen kann.
In nachfolgender Tabelle sind einige wesentliche Kennzahlen zu den größten in Europa vorhandenen Verbundnetzen zusammengefasst:
Verbundnetz | Installierte Leistung [GW] | Spitzenlast [GW] | Verbrauch [TWh/a] | Bevölkerung [Mio.] |
---|---|---|---|---|
Kontinentaleuropa UCTE | 631 | 390 | 2530 | 450 |
Skandinavien (Ex-NORDEL) | 94 | 66 | 405 | 24 |
Großbritannien National Grid ESO (Ex-UKTSOA) | 85 | 66 | 400 | 65 |
Russland/GUS IPS/UPS | 337 | 215 | 1285 | 280 |
Auch in einem transnationalen großflächigen Verbundnetz kann man größere Zwischenfälle nie ganz ausschließen bzw. vermeiden. Die Versorgungsqualität im europäischen Verbundsystem ist im Vergleich zu anderen Verbundnetzen hoch, wie nebenstehende Abbildung (Verlauf der Netzfrequenz über 48 Stunden) darstellt. Große Abweichungen der Netzfrequenz vom Nennwert von 50 Hz nach unten oder nach oben deuten auf größere Differenzen beim Ausgleich von Angebot und Nachfrage hin. Genauere Analysen, beispielsweise ob die Abweichungen eher niederfrequente Anteile wie im NORDEL-Verbundnetz oder eher hochfrequente Anteile wie im UKTSOA-Verbundnetz aufweisen, lassen Rückschlüsse auf die Regeleigenschaften des jeweiligen Verbundnetzes und auf das Verhalten in Störfällen zu.
Beispiele von größeren Störungen im UCTE-Verbundnetz:
Als Supergrid wird ein Stromnetz bezeichnet, das durch leistungsfähige Stromleitungen, üblicherweise in HGÜ-Technik ausgeführt, weit voneinander entfernte Gebiete miteinander verbindet.[18][19] Supergrids werden als wichtiges Element eines zukünftigen Elektrizitätswesens gesehen, um durch Verknüpfung von verschiedenen Regionen die mit dem Ausbau von Windkraft- und Photovoltaikanlagen verstärkt fluktuierende Stromproduktion zu verstetigen und damit den Ausbau von Speicherkraftwerken zu minimieren.[20] Grundsätzlich gilt, dass die Fernübertragung mittels HGÜ der Speicherung von Strom im Allgemeinen wirtschaftlich überlegen ist und daher möglichst vorgezogen werden sollte.[21]
Weltweit existieren verschiedene Planungen für Supergrids. Hierzu zählen z. B. jenes Supergrid, das im „DESERTEC“-Konzept Europa und Nordafrika miteinander verbinden soll, sowie das europäische Nordseenetz, das mehrere Nordseeanrainerstaaten und eine Vielzahl von Offshore-Windparks miteinander vernetzen soll. Darüber hinaus wurden weitere Vorschläge für Supergrids in Nord- und Südamerika, Russland und Osteuropa, Australien und Tasmanien, China und Südostasien und im Mittleren Osten gemacht.[20]
Als europäisches Supergrid wird ein geplantes europaweites Weitverkehrs-Höchstspannungsnetz bezeichnet.[22][23] Dieses könnte insbesondere zum Austausch von fluktuierenden erneuerbaren Energien über weite Entfernungen dienen. Es soll dazu beitragen, die regionale, wetterbedingt unterschiedliche Erzeugung auszugleichen.
Technisch waren vermaschte HGÜs hoher Kapazität mit Stand 2011 nicht realisierbar, sodass sich HGÜs abgesehen von wenigen Anlagen mit einfachen Abzweigungen, auf Endpunktverbindungen zwischen zwei Stromrichterstationen beschränkten. In den üblichen vermaschten Wechselspannungsnetzen, die auf Drehstrom-Hochspannungs-Übertragung basieren, stehen neben dem Parameter der Knotenspannungen auch davon unabhängig die Phasenlage und damit verknüpft die Parameter der Wirkleistung und der Blindleistung zur Verfügung. Mit Stand 2015 existieren durch die Fortschritte der Leistungselektronik jedoch bereits Hochspannungsleistungsschalter für Gleichstrom, die durch die Fähigkeit, Leitungen bei Netzfehlern einzeln aus dem Gesamtnetz herauszutrennen, zukünftig sowohl den Bau von Leitungen mit Abzweigknoten als auch von vermaschten Gleichstromnetzen zulassen.[24]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.