Remove ads
From Wikipedia, the free encyclopedia
En eksponentiel udvikling er en matematisk model, som kan bruges til at beskrive forskellige sammenhænge; typisk hvordan bestemte ting forandrer sig med tiden: Specielt for eksponentielle udviklinger gælder, at målt hen over lige store tidsintervaller stiger eller falder den (tids-)afhængige variabel med lige store forholdstal.
Her er nogle eksempler på fænomener, der følger (eller kan følge) en eksponentiel udvikling:
Sammenskrivningsforslag Artiklerne Eksponentiel vækst, Eksponentiel ligning, Eksponentiel udvikling er foreslået føjet ind i Eksponentiel udvikling. (Siden maj 2019) Diskutér forslaget Kort begrundelse: De handler om det samme. Evt. kunne det rent matematiske være under Eksponentialfunktion. |
Matematisk set beskrives den eksponentielle udvikling, som funktion, således:
hvor , , , og .
En eksponentiel udvikling kan beskrives ved de to tal og : Givet disse tal kan man med ovenstående regneudtryk svare på spørgsmål om, hvor stor den undersøgte størrelse var eller vil være til et givent tidspunkt . Med lidt omregning kan man tilsvarende bestemme, hvornår når eller nåede en bestemt værdi.
Givet to sammenhørende par af og (f.eks. oplysninger om et eksponentielt voksende indbyggertal to givne, forskellige år) kan man bestemme værdierne af og og derefter bruge formlen til at fremsætte prognoser som beskrevet ovenfor.
Størrelsen af er somme tider givet indirekte i form af et (for voksende eksponentielle udviklinger) fordoblings- eller (for aftagende udviklinger) halveringstal (eller -konstant): Dette er et udtryk for, hvor stor ændring i den uafhængige variabel der "skal til" for at få fordoblet hhv. halveret den afhængige variabel .
Hvis fordoblingstallet eller fordoblingstiden kaldes for , gælder:
Udtrykt ved halveringstallet eller halveringstiden t gælder:
Hvis man vil isolere x i ligningen for eksponentiel udvikling, vil den komme til at se sådan ud:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.