From Wikipedia, the free encyclopedia
Mewn mathemateg, mae cyfres Taylor yn cynrychioli ffwythiant fel swm anfeidraidd o dermau a gyfrifir o werthoedd deilliannau'r ffwythiant (the function's derivatives) ar un pwynt.
Mae'r defnydd cyntaf o gyfres Taylor i'w ganfod yn India, yng ngwaith y mathemategydd Mādhava o Sangamagrāma (c. 1340 – c. 1425), gwaith sydd bellach ar goll. Dyfynnir llawer o'r gwaith gan fathemategwyr Indiaidd eraill, a gan Ysgol Seryddiaeth Kerala, a gwyddom iddo lunio rhywbeth agos iawn at yr hyn a adnabyddir heddiw fel "cyfres Taylor".[1][2] Roedd ei ddefnydd o'r gyfres yn berthnasol i ffwythiannau trigonometrig sin, cosin, tangiad, a gwrthdangiad.
Lluniwyd y cysyniad modern o gyfres Taylor gan y mathemategydd Albanaidd James Gregory ond a gyflwynwyd yn ffurfiol gan y mathemategydd Saesneg Brook Taylor yn 1715. Os yw cyfres Taylor yn canolbwyntio ar sero, yna gelwir y gyfres honno hefyd yn "gyfres Maclaurin", a enwir ar ôl y mathemategydd Albanaidd Colin Maclaurin, a wnaeth ddefnydd helaeth o'r achos arbennig hwn o gyfres Taylor yn y 18g.
Yng nghyfres Taylor, y ffwythiant (real a chymhlyg) f (x) sy'n ddifferol anfeidraidd (infinitely differentiable) ar rif real neu rif cymhlyg a yw'r gyfres isradd
a ellir ei sgwennu mewn ffurf mwy crynno (nodiant sigma) fel
lle mae n! yn dynodi ffactorial n a lle mae f(n)(a) yn dynodi'r nfed deilliant o f a werthuswyd ar bwynt a. Mae deilliant trefn sero f yn cael ei ddiffinio i fod yn f ei hun ac mae (x − a)0 a 0! ill dau yn cael eu diffinio i fod yn 1. Pan fo a = 0, yna gelwir y gyfres yn "gyfres Maclaurin".[3]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.