Deltoid

From Wikipedia, the free encyclopedia

Deltoid

Deltoid je čtyřúhelník, jenž má dvě dvojice shodných sousedních stran.

Thumb
Deltoid
Thumb
Konvexní a nekonvexní deltoid

Název

Název pochází z tvaru řeckého písmene delta. Má tvar (klasického létajícího) draka; ryze anglický termín pro deltoid je „kite“ (drak) a ryze německý výraz je „Drachenviereck“ (dračí čtyřúhelník).

Vlastnosti

Deltoid ABCD z obrázku má dva páry shodných stran AB = AD, CB = CD, tyto shodné strany sdílejí stejné vrcholy (A, C).

Úhlopříčky deltoidu jsou na sebe kolmé. Značíme je AC = e = d1, BD = f = d2. Úhlopříčka BD u deltoidu ABCD z obrázku je úhlopříčkou AC půlena. Hlavní úhlopříčka AC dělí deltoid na dva shodné trojúhelníky a vedlejší na dva rovnoramenné trojúhelníky, mající tvar řeckého písmene delta, odtud název.

Deltoid je osově souměrný podle jediné hlavní úhlopříčky (AC). Spolu s identitou je to jediný jeho zákrytový pohyb, takže jeho grupa symetrie je jen Z2 .

Deltoid má zřejmě stejný součet délek protilehlých stran, je to tedy tečnový čtyřúhelník. Lze mu tedy vždy vepsat kružnici.

Zvláštní případy

Thumb
Deltoid s pravými úhly u vrcholů vedlejší úhlopříčky

Jestliže úhly u vrcholů vedlejší úhlopříčky (β, δ) jsou pravé, řadíme jej mezi dvojstředové čtyřúhelníky (lze mu opsat i vepsat kružnici). [1]

Reuleauxovu trojúhelníku lze vepsat deltoid, jehož úhlopříčky mají stejnou délku.

Thumb
Reuleauxův trojúhelník s vepsaným deltoidem

Speciální případ deltoidu je čtverec – právě když jsou všechny strany shodné AB = AD = BC = BD, všechny úhly jsou pravé a úhlopříčky AC = BD (jsou shodné); a kosočtverec – právě když jsou všechny strany shodné AB = AD = BC = BD a úhlopříčky AC = BD (jsou shodné).[2]

Obvod a obsah

Obvod deltoidu se rovná součtu délek jeho stran :

Obsah deltoidu je roven

,

kde jsou délky jeho úhlopříček. Pokud jsou délky různých stran a úhel jimi sevřený, pak

Podle obecného vztahu pro obsah tečnového čtyřúhelníku platí

,

kde je poloměr vepsané kružnice.

Reference

Související články

Externí odkazy

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.