vlastnost logické teorie, že neobsahuje spor From Wikipedia, the free encyclopedia
Bezesporná teorie (také konzistentní teorie) je označení používané v matematické logice pro formální teorii, která neobsahuje spor; v opačném případě se používá označení sporná teorie.
Teorie je sporná, je-li v ní dokazatelná nějaká sentence (tedy uzavřená formule) i její negace.[1] Není-li teorie sporná, říkáme, že je bezesporná neboli konzistentní. Za spor se v teorii T považuje každá formule, která je v T dokazatelná spolu se svojí negací.
Následující vlastnosti teorie T jsou ekvivalentní (v logice s rovností):
Tedy teorie obsahující spor je v „klasické“ logice nejsilnější teorií (ve smyslu velikosti množiny dokazatelných formulí), neboť dokazuje každé tvrzení. Dále platí:
Je-li T teorie a S její rozšíření, pak S je relativně bezesporná vůči T, pokud platí, že je-li T bezesporná, pak je bezesporná i S.
Tento pojem se často používá u rozšíření ZF a ZFC, neboť díky Gödelovým větám o neúplnosti je nemožné dokázat jejich bezespornost.
Příklad: Studiem konstruovatelných množin lze ukázat, že je-li ZF bezesporná, pak je bezesporná i ZF+CH. Bezespornost ZF však nelze dokázat. Proto je ZF+CH relativně bezesporná vzhledem k ZF.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.