typ diofantické rovnice v matematice From Wikipedia, the free encyclopedia
Pellova rovnice je označení diofantické rovnice ve tvaru:
kde je kladné celé číslo. Často je navíc přidáván požadavek, aby bylo nečtvercové, neboť ve variantě s čtvercovým číslem má rovnice jen dvojici řešení , která má vždy a označují se tedy triviální řešení.[1] Naopak není-li číslo čtvercem, pak má úloha nekonečně mnoho řešení, jak dokázal již Joseph-Louis Lagrange.
K nalezení základního řešení je možné použít řetězový zlomek vyjadřující .[1] Ze základního řešení je možné získat všechna další řešení z rekurentní rovnice s maticovým násobením:[1]
Z hlediska abstraktní algebry je nalezení řešení ekvivalentní úloze nalezení jednotek v okruhu celistvých čísel kvadratického tělesa.
Jedním z nejstarších výskytů patřičné úlohy je Archimédova úloha o dobytku.[2] Řešením Pellovy rovnice se zabývali rovněž matematikové ve staré Indii, kde ji zkoumal například Brahmagupta v sedmém století a Bháskara II. ve dvanáctém století.[3]
V novověké Evropě se Pellovou rovnicí zabýval mimo jiné Pierre de Fermat, který o ní také psal v roce 1657 v dopise, jehož adresátem byl jeho přítel Bernard Frénicle de Bessy. Pojmenování rovnice po anglickém matematikovi Johnu Pellovi vzniklo následkem toho, že jej Leonhard Euler mylně považoval za autora jejího řešení.[4]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.