En matemàtiques, el polinomi mínim d'un element α és el polinomi mònic p de menor grau tal que p(α)=0. Les propietats del polinomi mínim depenen de l'estructura algebraica a la qual pertany α.[1]
Aquest article o secció no cita les fonts o necessita més referències per a la seva verificabilitat. |
Teoria de cossos
En teoria de cossos, donada una extensió de cos E/F i un element α d'E que sigui algebraic sobre F, el polinomi mínim de α és el polinomi mònic p, amb coeficients en F, de menor grau tal que p(α) = 0. El polinomi mínim és irreductible, i qualsevol oltre polinomi no nul f que compleix f(α) = 0 és un múltiple de p.
Àlgebra lineal
En l'àlgebra lineal, el polinomi mínim d'una matriu n×n A sobre un cos K és el polinomi mònic p(x) sobre K de menor grau tal que p(A) = 0. Qualsevol altre polinomi q amb q(A) = 0 és un múltiple de p: el polinomi mínim és, doncs, un generador de l'ideal principal de l'anell dels polinomis de K[x] que anul·len A (és l'únic generador mònic).
Els següents tres enunciats són equivalents:
- λ∈K és una arrel de p(x),
- λ és una arrel del polinomi característic de A,
- λ és un valor propi de A.
La multiplicitat de l'arrel λ de p(x) és la grandària del major bloc de Jordan corresponent a λ.
El polinomi mínim no és sempre el mateix que el polinomi característic. Considerem la matriu , que té com a polinomi característic . Tot i així, el polinomi mínim és , ja que , pel que són diferents per a . El fet que el polinomi mínim sempre divideix el polinomi característic és conseqüència del teorema de Cayley–Hamilton.
Referències
Bibliografia
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.