conjunt que no conté cap dels punts que el limita From Wikipedia, the free encyclopedia
En matemàtiques, un conjunt obert (o simplement obert) és cadascun dels elements que conformen una topologia.[1]
Per exemple, a amb la topologia euclidiana, diem que és un conjunt obert, perquè per qualsevol valor tal que sempre podrem trobar un valor tal que la bola (obert de la topologia) .
En el cas anterior, si s'hagués agafat el conjunt , no podríem dir el mateix, ja que per no existeix cap que compleixi la condició.
El fet que un cert conjunt sigui obert o tancat no depèn dels elements de l'espai sinó també de la topologia que s'hi defineix. Així per exemple el cas anterior, en , no és un obert si prenem la topologia grollera.
La topologia és l'àmbit més general en què trobem els conjunts oberts. En aquest context, el concepte de conjunt obert és fonamental.[2]
Donat un conjunt , sigui un conjunt qualsevol de subconjunts de , que compleix les següents propietats.
Amb aquestes condicions, és un espai topològic, i a se l'anomena topologia de , i per definició, els conjunts de són conjunts oberts.
L'espai topològic ve especificat per la parella .
Cal observar que si es considera un conjunt amb dues topologies diferents, i , es tenen dos espais topològics diferents.
En el cas dels espais mètrics, la definició de conjunt obert, es pot fer de la següent forma:[3]
Sigui un subconjunt d'un espai mètric , es dirà que és obert si:
En el cas dels espais vectorials normats, com espais mètrics que són, es pot dir que un conjunt és obert si:[4]
on és la bola centrada a i de radi
Un conjunt obert a , té la propietat de ser una unió numerable d'intervals oberts. ( i també són oberts).
Cada subconjunt d'un espai topològic conté a un conjunt obert, tal vegada el conjunt buit. El més gran d'aquests conjunts oberts, s'anomena interior de , que es pot construir buscant la unió de tots els conjunts oberts continguts en .
Donats dos espais topològics, , una funció és contínua si la preimatge de cada conjunt obert en és oberta en .[5]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.