From Wikipedia, the free encyclopedia
Un ideal d'un anell A és un subconjunt I d'elements de A que és tancat respecte a operacions lineals i que compleix una sèrie de condicions que es detallaran a continuació. Per permetre l'aplicació a anells no commutatius, es defineixen ideals per l'esquerra i ideals per la dreta. Els ideals per les dues bandes (per exemple els d'anells commutatius) s'anomenen ideals bilàters o senzillament ideals.
El concepte d'ideal fou proposat per primera vegada per Richard Dedekind[1] el 1876 a la tercera edició del seu llibre Vorlesungen über Zahlentheorie ("Lliçons sobre teoria dels nombres"). Era una generalització del concepte de nombre ideal desenvolupat per Ernst Kummer. Més endavant la idea fou ampliada per David Hilbert i especialment Emmy Noether. La principal utilitat dels ideals que en motiva el seu ús és que permeten definir una relació d'equivalència que dona lloc al concepte d'anell quocient.
Sia un subconjunt d'un anell , es diu que és un ideal per l'esquerra quan:
Es diu que és un ideal per la dreta quan:
Fixem-nos que l'única diferència està en la darrera condició, on intervé l'operació producte (·) i que en ambdós casos les dues primeres condicions imposen la condició que sigui un subgrup d' amb l'operació suma (+).
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.