fizikalna teorija gravitacije i prostora From Wikipedia, the free encyclopedia
Opća teorija relativnosti, također poznata i kao opća relativnost ili Einsteinova teorija gravitacije, geometrijska je teorijagravitacije koju je 1915. objavio Albert Einstein i predstavlja trenutni opis gravitacije u modernoj fizici. Opća relativnost generalizuje posebnu relativnost i usavršava Newtonov zakon gravitacije, pružajući jedinstven opis gravitacije kao geometrijske osobine prostora i vremena ili četvorodimenzionalnogprostorvremena. Konkretno, zakrivljenost prostorvremena je direktnoj povezana s energijom i količinom kretanja bilo koje prisutne materije i zračenja. Odnos je određen Einsteinovim jednačinama polja, sistemom parcijalnih diferencijalnih jednačina drugog reda.
Newtonov zakon gravitacije, koji opisuje klasičnu gravitaciju, može se posmatrati kao predviđanje opće relativnosti za skoro ravnu geometriju prostorvremena oko stacionarne raspodjele mase. Međutim, neka predviđanja opće relativnosti su izvan Newtonov zakon gravitacije u klasičnoj fizici. Ova predviđanja se tiču protoka vremena, geometrije prostora, kretanja tijela u slobodnom padu i širenja svjetlosti, a uključuju gravitacijsku vremensku dilataciju, gravitacijsku leću, gravitacijski crveni pomak svjetlosti, Shapirovo vremensko kašnjenje i singularnosti/crne rupe. Do sada se pokazalo da su svi testovi opće relativnosti u skladu s teorijom. Vremenski zavisna rješenja opće relativnosti omogućavaju nam da govorimo o historiji svemira i dala su moderni okvir za kosmologiju, što je dovelo do otkrića Velikog praska i kosmičkog mikrovalnog pozadinskog zračenja. Uprkos uvođenju brojnih alternativnih teorija, opća teorija relativnosti je i dalje najjednostavnija teorija koja je konzistentna s eksperimentalnim podacima.
Pomirenje opće teorije relativnosti sa zakonima kvantne fizike ostaje problem, jer postoji nedostatak samodosljedne teorije kvantne gravitacije. Još nije poznato kako se gravitacija može ujediniti s tri negravitacijske sile: jakom, slabom i elektromagnetnom.
Einsteinova teorija ima važne astrofizičke posljedice. Na primjer, ona podrazumijeva postojanje crnih rupa—regija u prostoru u kojima su prostor i vrijeme iskrivljeni na takav način da ništa, čak ni svjetlo, ne može pobjeći—kao završno stanje masivnih zvijezda. Postoji mnogo dokaza da intenzivna zračenja koje emitiraju određene vrste astronomskih objekata dešavaju zbog crnih rupa; na primjer, mikrokvazari i aktivna galaksijska jezgra su rezultat postojanja zvjezdanih crnih rupa i crnih rupa znatno veće masivne vrste. Savijanje svjetlosti gravitacijom može dovesti do fenomena gravitacione leće, u kojem je više slika istog udaljenog astronomskog objekta vidljivo na nebu. Opća relativnost također predviđa postojanje gravitacionih talasa, koji su posredno bili posmatrani; direktna mjerenja su cilj projekata kao što su LIGO i NASA/ESA Laser Interferometer Space Antenna i raznih "pulsar timing arrays". Osim toga, opća relativnost je osnova tekućih kosmoloških modela konzistentnog širenja svemira.
Ubrzo nakon što je 1905. objavio specijalnu teoriju relativnosti, Einstein je počeo da razmišlja o tome kako da ugradi gravitaciju u svoj novi relativistički okvir. Godine 1907., počevši od jednostavnog misaonog eksperimenta koji je uključivao posmatrača u slobodnom padu, krenuo je u osmogodišnju potragu za relativističkom teorijom gravitacije. Nakon brojnih zaobilaznica i lažnih startova, njegov rad je kulminirao prezentacijom Pruskoj akademiji nauka u novembru 1915. onoga što je danas poznato kao jednačine Einsteinovog polja, koje čine jezgro Einsteinove opšte teorije relativnosti.[2] Ove jednačine određuju kako na geometriju prostora i vremena utiču bilo koja materija i radijacija. Verzija neeuklidske geometrije, nazvana Rimanova geometrija, omogućila je Einsteinu da razvije opštu relativnost obezbeđujući ključni matematički okvir na koji je uklapao svoje fizičke ideje gravitacije.[3] Ovu ideju je ukazao matematičar Marcel Grossman, a objavili su je Grosman i Einstein 1913. godine.[4]
Jednačine Einsteinovog polja su nelinearne i smatraju se teškim za rješavanje. Einstein je koristio metode aproksimacije u izradi početnih predviđanja teorije. Ali 1916. godine, astrofizičar Karl Schwarzschild pronašao je prvo netrivijalno egzaktno rješenje jednačina Einsteinovog polja, Schwarzschildovu metriku. Ovo rješenje je postavilo temelje za opis završnih faza gravitacionog kolapsa i objekata danas poznatih kao crne rupe. Iste godine poduzeti su prvi koraci ka generalizaciji Schwarzschildovog rješenja na električno nabijene objekte, što je na kraju rezultiralo Reissner-Nordströmovim rješenjem, koje je sada povezano s električno nabijenim crnim rupama.[5] Godine 1917. Einstein je primjenio svoju teoriju na univerzum kao cjelinu, pokrećući polje relativističke kosmologije. U skladu sa savremenim razmišljanjem, on je pretpostavio statičan univerzum, dodajući novi parametar svojim originalnim jednačinama polja – kosmološku konstantu – kako bi odgovarao toj opservacionoj pretpostavci.[6] Do 1929. godine, međutim, rad Hubblea i drugih pokazao je da se naš svemir širi. Ovo se lako opisuje proširenim kosmološkim rješenjima koja je pronašao Friedman 1922. godine, a koja ne zahtijevaju kosmološku konstantu. Lemaître je koristio ova rješenja kako bi formulisao najraniju verziju modela Velikog praska, u kojem je naš svemir evoluirao iz izuzetno vrućeg i gustog ranijeg stanja.[7]Einstein je kasnije proglasio kosmološku konstantu najvećom greškom u svom životu.[8]
Grossmann for the mathematical part and Einstein for the physical part (1913). Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation (Outline of a Generalized Theory of Relativity and of a Theory of Gravitation), Zeitschrift für Mathematik und Physik, 62, 225–261. English translate
Anderson, J. D.; Campbell, J. K.; Jurgens, R. F.; Lau, E. L. (1992), "Recent developments in solar-system tests of general relativity", u Sato, H.; Nakamura, T. (ured.), Proceedings of the Sixth Marcel Großmann Meeting on General Relativity, World Scientific, str.353–355, ISBN978-981-02-0950-6
Arnold, V. I. (1989), Mathematical Methods of Classical Mechanics, Springer, ISBN978-3-540-96890-0
Arnowitt, Richard; Deser, Stanley; Misner, Charles W. (1962), "The dynamics of general relativity", u Witten, Louis (ured.), Gravitation: An Introduction to Current Research, Wiley, str.227–265
Ashtekar, Abhay (2007), "Loop Quantum Gravity: Four Recent Advances and a Dozen Frequently Asked Questions", The Eleventh Marcel Grossmann Meeting – on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories – Proceedings of the MG11 Meeting on General Relativity: 126, arXiv:0705.2222, Bibcode:2008mgm..conf..126A, doi:10.1142/9789812834300_0008, ISBN978-981-283-426-3, S2CID119663169
Ashtekar, Abhay; Magnon-Ashtekar, Anne (1979), "On conserved quantities in general relativity", Journal of Mathematical Physics, 20 (5): 793–800, Bibcode:1979JMP....20..793A, doi:10.1063/1.524151
Auyang, Sunny Y. (1995), How is Quantum Field Theory Possible?, Oxford University Press, ISBN978-0-19-509345-2
Barish, Barry (2005), "Towards detection of gravitational waves", u Florides, P.; Nolan, B.; Ottewil, A. (ured.), General Relativity and Gravitation. Proceedings of the 17th International Conference, World Scientific, str.24–34, Bibcode:2005grg..conf.....F, ISBN978-981-256-424-5
Beig, Robert; Chruściel, Piotr T. (2006), "Stationary black holes", u Françoise, J.-P.; Naber, G.; Tsou, T.S. (ured.), Encyclopedia of Mathematical Physics, Volume 2, Elsevier, str.2041, arXiv:gr-qc/0502041, Bibcode:2005gr.qc.....2041B, ISBN978-0-12-512660-1
Belinskii, V. A.; Khalatnikov, I. M.; Lifschitz, E. M. (1971), "Oscillatory approach to the singular point in relativistic cosmology", Advances in Physics, 19 (80): 525–573, Bibcode:1970AdPhy..19..525B, doi:10.1080/00018737000101171; original paper in Russian: Belinsky, V. A.; Lifshits, I. M.; Khalatnikov, E. M. (1970), "Колебательный Режим Приближения К Особой Точке В Релятивистской Космологии", Uspekhi Fizicheskikh Nauk, 102 (11): 463–500, Bibcode:1970UsFiN.102..463B, doi:10.3367/ufnr.0102.197011d.0463
Bennett, C. L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.; Page, L.; etal. (2003), "First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results", Astrophys. J. Suppl. Ser., 148 (1): 1–27, arXiv:astro-ph/0302207, Bibcode:2003ApJS..148....1B, doi:10.1086/377253, S2CID115601
Bertotti, Bruno; Ciufolini, Ignazio; Bender, Peter L. (1987), "New test of general relativity: Measurement of de Sitter geodetic precession rate for lunar perigee", Physical Review Letters, 58 (11): 1062–1065, Bibcode:1987PhRvL..58.1062B, doi:10.1103/PhysRevLett.58.1062, PMID10034329
Blanchet, L.; Faye, G.; Iyer, B. R.; Sinha, S. (2008), "The third post-Newtonian gravitational wave polarisations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits", Classical and Quantum Gravity, 25 (16): 165003, arXiv:0802.1249, Bibcode:2008CQGra..25p5003B, doi:10.1088/0264-9381/25/16/165003, S2CID54608927
Blandford, R. D. (1987), "Astrophysical Black Holes", u Hawking, Stephen W.; Israel, Werner (ured.), 300 Years of Gravitation, Cambridge University Press, str.277–329, ISBN978-0-521-37976-2
Börner, Gerhard (1993), The Early Universe. Facts and Fiction, Springer, ISBN978-0-387-56729-7
Bruhat, Yvonne (1962), "The Cauchy Problem", u Witten, Louis (ured.), Gravitation: An Introduction to Current Research, Wiley, str.130, ISBN978-1-114-29166-9
Carter, Brandon (1979), "The general theory of the mechanical, electromagnetic and thermodynamic properties of black holes", u Hawking, S. W.; Israel, W. (ured.), General Relativity, an Einstein Centenary Survey, Cambridge University Press, str.294–369 and 860–863, ISBN978-0-521-29928-2
Chandrasekhar, Subrahmanyan (1983), The Mathematical Theory of Black Holes, New York: Oxford University Press, ISBN978-0-19-850370-5
Chandrasekhar, Subrahmanyan (1984), "The general theory of relativity – Why 'It is probably the most beautiful of all existing theories'", Journal of Astrophysics and Astronomy, 5: 3–11, Bibcode:1984JApA....5....3C, doi:10.1007/BF02714967, S2CID120910934
Ciufolini, Ignazio; Pavlis, Erricos C.; Peron, R. (2006), "Determination of frame-dragging using Earth gravity models from CHAMP and GRACE", New Astron., 11 (8): 527–550, Bibcode:2006NewA...11..527C, doi:10.1016/j.newast.2006.02.001
Coc, A.; Vangioni‐Flam, Elisabeth; Descouvemont, Pierre; Adahchour, Abderrahim; Angulo, Carmen (2004), "Updated Big Bang Nucleosynthesis confronted to WMAP observations and to the Abundance of Light Elements", Astrophysical Journal, 600 (2): 544–552, arXiv:astro-ph/0309480, Bibcode:2004ApJ...600..544C, doi:10.1086/380121, S2CID16276658
Cutler, Curt; Thorne, Kip S. (2002), "An overview of gravitational wave sources", u Bishop, Nigel; Maharaj, Sunil D. (ured.), Proceedings of 16th International Conference on General Relativity and Gravitation (GR16), World Scientific, str.4090, arXiv:gr-qc/0204090, Bibcode:2002gr.qc.....4090C, ISBN978-981-238-171-2
Donoghue, John F. (1995), "Introduction to the Effective Field Theory Description of Gravity", u Cornet, Fernando (ured.), Effective Theories: Proceedings of the Advanced School, Almunecar, Spain, 26 June–1 July 1995, Singapore: World Scientific, str.12024, arXiv:gr-qc/9512024, Bibcode:1995gr.qc....12024D, ISBN978-981-02-2908-5
Ehlers, Jürgen (1973), "Survey of general relativity theory", u Israel, Werner (ured.), Relativity, Astrophysics and Cosmology, D. Reidel, str.1–125, ISBN978-90-277-0369-9
Ellis, George F R; Van Elst, Henk (1999), Lachièze-Rey, Marc (ured.), "Theoretical and Observational Cosmology: Cosmological models (Cargèse lectures 1998)", Theoretical and Observational Cosmology: Proceedings of the NATO Advanced Study Institute on Theoretical and Observational Cosmology, 541: 1–116, arXiv:gr-qc/9812046, Bibcode:1999ASIC..541....1E, doi:10.1007/978-94-011-4455-1_1, ISBN978-0-7923-5946-3, S2CID122994560
Engler, Gideon (2002), "Einstein and the most beautiful theories in physics", International Studies in the Philosophy of Science, 16 (1): 27–37, doi:10.1080/02698590120118800, S2CID120160056
Everitt, C. W. F.; Buchman, S.; DeBra, D. B.; Keiser, G. M. (2001), "Gravity Probe B: Countdown to launch", u Lämmerzahl, C.; Everitt, C. W. F.; Hehl, F. W. (ured.), Gyros, Clocks, and Interferometers: Testing Relativistic Gravity in Space (Lecture Notes in Physics 562), Springer, str.52–82, ISBN978-3-540-41236-6
Gowdy, Robert H. (1974), "Vacuum spacetimes with two-parameter spacelike isometry groups and compact invariant hypersurfaces: Topologies and boundary conditions", Annals of Physics, 83 (1): 203–241, Bibcode:1974AnPhy..83..203G, doi:10.1016/0003-4916(74)90384-4
Green, M. B.; Schwarz, J. H.; Witten, E. (1987), Superstring theory. Volume 1: Introduction, Cambridge University Press, ISBN978-0-521-35752-4
Greenstein, J. L.; Oke, J. B.; Shipman, H. L. (1971), "Effective Temperature, Radius, and Gravitational Redshift of Sirius B", Astrophysical Journal, 169: 563, Bibcode:1971ApJ...169..563G, doi:10.1086/151174
Havas, P. (1964), "Four-Dimensional Formulation of Newtonian Mechanics and Their Relation to the Special and the General Theory of Relativity", Rev. Mod. Phys., 36 (4): 938–965, Bibcode:1964RvMP...36..938H, doi:10.1103/RevModPhys.36.938
Hawking, Stephen W. (1987), "Quantum cosmology", u Hawking, Stephen W.; Israel, Werner (ured.), 300 Years of Gravitation, Cambridge University Press, str.631–651, ISBN978-0-521-37976-2
Hawking, Stephen W.; Ellis, George F. R. (1973), The large scale structure of space-time, Cambridge University Press, ISBN978-0-521-09906-6
Heckmann, O. H. L.; Schücking, E. (1959), "Newtonsche und Einsteinsche Kosmologie", u Flügge, S. (ured.), Encyclopedia of Physics, 53, str.489
Isham, Christopher J. (1994), "Prima facie questions in quantum gravity", u Ehlers, Jürgen; Friedrich, Helmut (ured.), Canonical Gravity: From Classical to Quantum, Springer, ISBN978-3-540-58339-4
Israel, Werner (1987), "Dark stars: the evolution of an idea", u Hawking, Stephen W.; Israel, Werner (ured.), 300 Years of Gravitation, Cambridge University Press, str.199–276, ISBN978-0-521-37976-2
Kennefick, Daniel (2005), "Astronomers Test General Relativity: Light-bending and the Solar Redshift", u Renn, Jürgen (ured.), One hundred authors for Einstein, Wiley-VCH, str.178–181, ISBN978-3-527-40574-9
Kennefick, Daniel (2007), "Not Only Because of Theory: Dyson, Eddington and the Competing Myths of the 1919 Eclipse Expedition", Proceedings of the 7th Conference on the History of General Relativity, Tenerife, 2005, 0709, str.685, arXiv:0709.0685, Bibcode:2007arXiv0709.0685K, doi:10.1016/j.shpsa.2012.07.010, S2CID119203172
Kenyon, I. R. (1990), General Relativity, Oxford University Press, ISBN978-0-19-851996-6
Kochanek, C.S.; Falco, E.E.; Impey, C.; Lehar, J. (2007), CASTLES Survey Website, Harvard-Smithsonian Center for Astrophysics, pristupljeno 21. 8. 2007
Kuchař, Karel (1973), "Canonical Quantization of Gravity", u Israel, Werner (ured.), Relativity, Astrophysics and Cosmology, D. Reidel, str.237–288, ISBN978-90-277-0369-9
MacCallum, M. (2006), "Finding and using exact solutions of the Einstein equations", u Mornas, L.; Alonso, J. D. (ured.), AIP Conference Proceedings (A Century of Relativity Physics: ERE05, the XXVIII Spanish Relativity Meeting), 841, str.129–143, arXiv:gr-qc/0601102, Bibcode:2006AIPC..841..129M, doi:10.1063/1.2218172, S2CID13096531
Mather, J. C.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E.; Fixsen, D. J.; Hewagama, T.; Isaacman, R. B.; Jensen, K. A.; etal. (1994), "Measurement of the cosmic microwave spectrum by the COBE FIRAS instrument", Astrophysical Journal, 420: 439–444, Bibcode:1994ApJ...420..439M, doi:10.1086/173574
Narayan, Ramesh; Bartelmann, Matthias (1997). "Lectures on Gravitational Lensing". arXiv:astro-ph/9606001.
Narlikar, Jayant V. (1993), Introduction to Cosmology, Cambridge University Press, ISBN978-0-521-41250-6
Nordström, Gunnar (1918), "On the Energy of the Gravitational Field in Einstein's Theory", Verhandl. Koninkl. Ned. Akad. Wetenschap., 26: 1238–1245, Bibcode:1918KNAB...20.1238N
O'Meara, John M.; Tytler, David; Kirkman, David; Suzuki, Nao; Prochaska, Jason X.; Lubin, Dan; Wolfe, Arthur M. (2001), "The Deuterium to Hydrogen Abundance Ratio Towards a Fourth QSO: HS0105+1619", Astrophysical Journal, 552 (2): 718–730, arXiv:astro-ph/0011179, Bibcode:2001ApJ...552..718O, doi:10.1086/320579, S2CID14164537
Penzias, A. A.; Wilson, R. W. (1965), "A measurement of excess antenna temperature at 4080 Mc/s", Astrophysical Journal, 142: 419–421, Bibcode:1965ApJ...142..419P, doi:10.1086/148307
Remillard, Ronald A.; Lin, Dacheng; Cooper, Randall L.; Narayan, Ramesh (2006), "The Rates of Type I X-Ray Bursts from Transients Observed with RXTE: Evidence for Black Hole Event Horizons", Astrophysical Journal, 646 (1): 407–419, arXiv:astro-ph/0509758, Bibcode:2006ApJ...646..407R, doi:10.1086/504862, S2CID14949527
Renn, Jürgen, ured. (2007), The Genesis of General Relativity (4 Volumes), Dordrecht: Springer, ISBN978-1-4020-3999-7
Renn, Jürgen, ured. (2005), Albert Einstein—Chief Engineer of the Universe: Einstein's Life and Work in Context, Berlin: Wiley-VCH, ISBN978-3-527-40571-8
Rovelli, Carlo, ured. (2015), General Relativity: The most beautiful of theories (de Gruyter Studies in Mathematical Physics), Boston: Walter de Gruyter GmbH, ISBN978-3-11-034042-6
Rovelli, Carlo (2000). "Notes for a brief history of quantum gravity". arXiv:gr-qc/0006061.
Schwarzschild, Karl (1916a), "Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie", Sitzungsber. Preuss. Akad. D. Wiss.: 189–196, Bibcode:1916SPAW.......189S
Schwarzschild, Karl (1916b), "Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie", Sitzungsber. Preuss. Akad. D. Wiss.: 424–434, Bibcode:1916skpa.conf..424S
Seidel, Edward (1998), "Numerical Relativity: Towards Simulations of 3D Black Hole Coalescence", u Narlikar, J. V.; Dadhich, N. (ured.), Gravitation and Relativity: At the turn of the millennium (Proceedings of the GR-15 Conference, held at IUCAA, Pune, India, December 16–21, 1997), IUCAA, str.6088, arXiv:gr-qc/9806088, Bibcode:1998gr.qc.....6088S, ISBN978-81-900378-3-9
Shapiro, S. S.; Davis, J. L.; Lebach, D. E.; Gregory, J. S. (2004), "Measurement of the solar gravitational deflection of radio waves using geodetic very-long-baseline interferometry data, 1979–1999", Phys. Rev. Lett., 92 (12): 121101, Bibcode:2004PhRvL..92l1101S, doi:10.1103/PhysRevLett.92.121101, PMID15089661
Spergel, D. N.; Verde, L.; Peiris, H. V.; Komatsu, E.; Nolta, M. R.; Bennett, C. L.; Halpern, M.; Hinshaw, G.; etal. (2003), "First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters", Astrophys. J. Suppl. Ser., 148 (1): 175–194, arXiv:astro-ph/0302209, Bibcode:2003ApJS..148..175S, doi:10.1086/377226, S2CID10794058
Spergel, D. N.; Bean, R.; Doré, O.; Nolta, M. R.; Bennett, C. L.; Dunkley, J.; Hinshaw, G.; Jarosik, N.; etal. (2007), "Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology", Astrophysical Journal Supplement, 170 (2): 377–408, arXiv:astro-ph/0603449, Bibcode:2007ApJS..170..377S, doi:10.1086/513700, S2CID1386346
Springel, Volker; White, Simon D. M.; Jenkins, Adrian; Frenk, Carlos S.; Yoshida, Naoki; Gao, Liang; Navarro, Julio; Thacker, Robert; etal. (2005), "Simulations of the formation, evolution and clustering of galaxies and quasars", Nature, 435 (7042): 629–636, arXiv:astro-ph/0504097, Bibcode:2005Natur.435..629S, doi:10.1038/nature03597, PMID15931216, S2CID4383030
Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E. (2003), Exact Solutions of Einstein's Field Equations (2izd.), Cambridge University Press, ISBN978-0-521-46136-8
Synge, J. L. (1972), Relativity: The Special Theory, North-Holland Publishing Company, ISBN978-0-7204-0064-9
't Hooft, Gerard; Veltman, Martinus (1974), "One Loop Divergencies in the Theory of Gravitation", Ann. Inst. Poincare, 20 (1): 69, Bibcode:1974AIHPA..20...69T
Thorne, Kip S. (1972), "Nonspherical Gravitational Collapse—A Short Review", u Klauder, J. (ured.), Magic without Magic, W. H. Freeman, str.231–258
Thorne, Kip S. (1994), Black Holes and Time Warps: Einstein's Outrageous Legacy, W W Norton & Company, ISBN978-0-393-31276-8
Traschen, Jennie (2000), Bytsenko, A.; Williams, F. (ured.), "An Introduction to Black Hole Evaporation", Mathematical Methods of Physics (Proceedings of the 1999 Londrina Winter School), World Scientific: 180, arXiv:gr-qc/0010055, Bibcode:2000mmp..conf..180T
Trautman, Andrzej (2006), "Einstein–Cartan theory", u Françoise, J.-P.; Naber, G. L.; Tsou, S. T. (ured.), Encyclopedia of Mathematical Physics, Vol. 2, Elsevier, str.189–195, arXiv:gr-qc/0606062, Bibcode:2006gr.qc.....6062T
Veltman, Martinus (1975), "Quantum Theory of Gravitation", u Balian, Roger; Zinn-Justin, Jean (ured.), Methods in Field Theory – Les Houches Summer School in Theoretical Physics., 77, North Holland
Weisberg, Joel M.; Taylor, Joseph H. (2003), "The Relativistic Binary Pulsar B1913+16"", u Bailes, M.; Nice, D. J.; Thorsett, S. E. (ured.), Proceedings of "Radio Pulsars," Chania, Crete, August, 2002, ASP Conference Series
Einstein OnlineArhivirano 1. 6. 2014. na Wayback Machine– Članci o različitim aspektima relativističke fizike za širu publiku (Institut za gravitacijsku fiziku "Max Planck")