Loading AI tools
উইকিপিডিয়া থেকে, বিনামূল্যে একটি বিশ্বকোষ
ব্যবকলনীয় জ্যামিতি (অথবা অন্তরকলনীয় জ্যামিতি, ইংরেজি: Differential Geometry) হচ্ছে গণিতের একটি শাখা যা ব্যবকলন/ অন্তরকলন, সমাকলন, রৈখিক বীজগণিত এবং বহুরৈখিক বীজগণিতের প্রক্রিয়াসমূহ ব্যবহার করে জ্যামিতিক সমস্যা নিয়ে অধ্যয়ন করে। ১৮শ ও ১৯শ শতকের দিকে, সমতলীয় ও স্থানিক বক্ররেখা তত্ত্ব এবং ত্রিমাত্রিক ইউক্লিডীয় স্থানে অবস্থিত পৃষ্ঠতলের ধারণা থেকে ব্যবকলনীয় জ্যামিতির ভিত্তি রচিত হয়।
১৯শ শতকের শেষদিক থেকে, ব্যবকলনীয় জ্যামিতি ক্রমশ আরও সাধারণভাবে ব্যবকলনীয় স্থানসমূহের জ্যামিতিক গঠন নিয়ে পর্যালোচনার ক্ষেত্রে পরিণত হয়েছে। ব্যবকলনীয় জ্যামিতি খুব নিবিড়ভাবে ব্যবকলনীয় টপোলজি ও ব্যবকলনীয় সমীকরণ তত্ত্বের জ্যামিতিক প্রেক্ষাপটের সাথে সম্পর্কিত। পৃষ্ঠতলের ব্যবকলনীয় জ্যামিতি অনেকগুলো অন্তর্নিহিত মূল ধারণা ও কলাকৌশল ধারণ করে, যা এই ক্ষেত্রটির সাথে অঙ্গাঙ্গিভাবে জড়িত।
এই অংশে যথাসম্ভব এমন বিষয়বস্তু রয়েছে, যা প্রকাশিত একাধিক গবেষণার সংমিশ্রণ হয়ে নতুন সিদ্ধান্ত প্রদান করে এবং এর মূল বিষয়বস্তু উইকিপিডিয়ার যাচাইযোগ্যতার বাহিরে পড়ে অথবা অপ্রাসঙ্গিক তথ্য প্রদান করে। (February 2017) |
বক্ররেখা ও পৃষ্ঠতলের গাণিতিক বিশ্লেষণের পারস্পরিক সম্পর্কের ফলস্বরূপ ব্যবকলনীয় জ্যামিতির উত্থান ও বিকাশ হয়েছিল।[1] বক্ররেখা ও পৃষ্ঠতলের গাণিতিক বিশ্লেষণের বিকাশ ঘটেছিল ক্যালকুলাস থেকে উদ্ভূত কতগুলো বিরক্তি-উদ্রেককারী ও অনুত্তরিত প্রশ্নের কারণে, যেমন- জটিল আকারের সাথে বক্ররেখা, ধারা এবং বিশ্লেষণমূলক ফাংশনের মধ্যকার সম্পর্কের কারণ। এইসব অনুত্তরিত প্রশ্নাবলি এদের মধ্যে বিদ্যমান বৃহত্তর, গুপ্ত সম্পর্কের দিকেই ইঙ্গিত করতো।
লিওনার্দ অয়লারই ১৭৩৬ সালে সর্বপ্রথম, স্থানিক বক্রতা হতে বক্ররেখার স্বাভাবিক সমীকরণের সাধারণ ধারণার প্রবর্তন করেন বলে দেখতে পাওয়া যায়, এবং ঊনবিংশ শতকের দিকে, তুলনামূলকভাবে সরল আচরণের এমন অনেকগুলো দৃষ্টান্ত পর্যালোচনা করা হয়।[2]
যখন থেকে বক্ররেখা, বক্ররেখা দ্বারা আবদ্ধ পৃষ্ঠতল, এবং বক্ররেখার ওপর অবস্থিত বিন্দুসমূহ, পরিমাণগতভাবে ও সাধারণভাবে বিভিন্ন গাণিতিক রূপ দ্বারা সম্পর্কিত বলে প্রমাণ পাওয়া যায়, তখন থেকেই বক্ররেখা ও পৃষ্ঠতলের আচরণ নিয়ে আনুষ্ঠানিক অধ্যয়ন, নিজস্ব অধিকারবলেই একটি পৃথক শাস্ত্রে পরিণত হয়; ১৭৯৫ সালে মঞ্জ (Monge) এর গবেষণাপত্র, এবং বিশেষ করে ১৮২৭ সালে গটিনজেন রয়্যাল সোসাইটি অফ সায়েন্স এন্ড রিসেন্ট স্টাডিজ (Commentationes Societatis Regiae Scientiarum Gottingesis Recentiores) – এ ‘বক্র পৃষ্ঠতল সংক্রান্ত সাধারণ গবেষণা’- শিরোনামে (মূল শিরোনামঃ ‘Disquisitiones Generales Circa Superficies Curvas’) গাউস এর প্রকাশিত নিবন্ধ থেকে এর গোড়াপত্তন ঘটে।[3][4]
প্রাথমিকভাবে ইউক্লিডীয় স্থানে প্রয়োগ করা হলেও, আরও গবেষণার ফলে অ-ইউক্লিডীয় স্থান, এবং মেট্রিক ও টপোলজিক্যাল স্থানেও এর প্রয়োগ দেখা যায়।
মূল নিবন্ধ: রিমানীয় জ্যামিতি
রিমানীয় জ্যামিতি একটি রিমানীয় পরিমাপ পদ্ধতি এর মাধ্যমে রিমানীয় স্থান (Riemannian manifolds) ও মসৃণ স্থান (smooth manifolds) নিয়ে পর্যালোচনা করে। এটি একটি দূরত্বের ধারণা, যা কোন স্পর্শক-স্থানের (tangent space) প্রতিটি বিন্দুতে একটি মসৃণ, নির্দিষ্ট ধনাত্মক, প্রতিসম দ্বি-রৈখিক আকার দ্বারা সংজ্ঞায়িত। রিমানীয় জ্যামিতি ইউক্লিডীয় জ্যামিতিকে এমন সব স্থানের জন্য সাধারণ রূপ দান করে, যেগুলো আবশ্যকভাবে সমতল নয়, যদিও সেগুলো প্রতিটি বিন্দুতে ক্ষুদ্রাতিক্ষুদ্রভাবে ইউক্লিডীয় স্থানের সদৃশ, তার মানে, প্রথম ক্রমের আসন্ন মানের (first order of approximation) ক্ষেত্রে। দৈর্ঘ্য-ভিত্তিক নানাবিধ ধারণা যেমন, বক্ররেখার চাপের দৈর্ঘ্য, সমতল অঞ্চলের ক্ষেত্রফল, এবং ঘনবস্তুর আয়তন – এদের সবার সদৃশ স্বাভাবিক একটি রূপ রিমানীয় জ্যামিতিতে বিদ্যমান। বহু-চলকবিশিষ্ট ক্যালকুলাস হতে কোন ফাংশনের দিকবর্তী অন্তরক (directional derivative) এর ধারণাকে, রিমানীয় জ্যামিতিতে টেন্সরের সহ-পরিবর্তনশীল অন্তরকের (covariant derivative) ধারণায় বিস্তৃত করা যায়। অনেকগুলো ধারণা, বিশ্লেষণ পদ্ধতি এবং ব্যবকলনীয় সমীকরণকে রিমানীয় স্থানসমূহের বিন্যাস অনুসারে সাধারণ রূপ দান করা হয়েছে।
একাধিক রিমানীয় স্থানের মধ্যে কোন দূরত্ব-সংরক্ষণশীল ডিফিওমরফিজম (diffeomorphism) থাকলে তাকে সমমিতি (isometry) বলা হয়। এই ধারণাটি স্থানিকভাবেও সংজ্ঞায়িত করা যায়, অর্থাৎ, ক্ষুদ্র এলাকার বিন্দুর জন্যও। যে কোন দুটি নিয়মিত বক্ররেখা স্থানিকভাবে সমমিতিক। তবে, কার্ল ফ্রেডেরিখ গাউস তার অসাধারণ উপপাদ্য (Theorema Egregium)–তে দেখান যে, পৃষ্ঠতলের জন্য স্থানিক সমমিতির অস্তিত্ব তাদের পরিমাপের ওপর গভীর সামঞ্জস্য আরোপ করে: অনুরূপ বিন্দুগুলোতে গাউসীয় বক্রতা অবশ্যই সমান হতে হবে। উচ্চতর মাত্রায়, রিমান বক্রতা-টেন্সর একটি গুরুত্বপূর্ণ বিন্দুভিত্তিক অভেদ, যা সেই রিমান স্থানের সাথে সম্পর্কিত, যেটি পরিমাপ করে যে, সেটা সমতল হওয়ার কতটা কাছাকাছি আছে। রিমানীয় স্থানের একটি গুরুত্বপূর্ণ শ্রেণি হচ্ছে রিমানীয় প্রতিসম স্থান, যাদের বক্রতা অপরিহার্যভাবে ধ্রুব নয়। এগুলোই কোন “সাধারণ” সমতল এবং ইউক্লিডীয় ও অ-ইউক্লিডীয় জ্যামিতিতে বিবেচ্য স্থানসমূহের সবচেয়ে নিকটবর্তী সদৃশ রূপ।
ছদ্ম-রিমানীয় জ্যামিতি, রিমানীয় জ্যামিতিকে ঐ ক্ষেত্র পর্যন্ত সাধারণ রূপ দান করে, যেক্ষেত্রে মেট্রিক টেন্সর নির্দিষ্ট-ধনাত্মক হওয়া আবশ্যক নয়। এর একটি বিশেষ ক্ষেত্র হচ্ছে লরেঞ্জীয় স্থান (Lorentzian manifold), যা আইনস্টাইনের মাধ্যাকর্ষণের সাধারণ আপেক্ষিকতা তত্ত্বের গাণিতিক ভিত্তি।
মূল নিবন্ধ: ফিন্সলার পদ্ধতি
ফিন্সলার জ্যামিতিতে আলোচনার প্রধান বস্তু হচ্ছে ফিন্সলার স্থান (Finsler manifolds)। এটি ফিন্সলার পরিমাপ সংবলিত একটি ব্যবকলনযোগ্য স্থান (differential manifold), অর্থাৎ, প্রতিটি স্পর্শক-স্থানে সংজ্ঞায়িত একটি ব্যানাক্স মান (Banach norm) । রিমানীয় স্থান হচ্ছে বিশেষ একটি ক্ষেত্র, যার আরও সাধারণ রূপ হচ্ছে ফিন্সলার স্থানসমূহ। কোন স্থান এ কোন একটি ফিন্সলার কাঠামো হচ্ছে একটি ফাংশন যেন:
১. ; এ অন্তর্ভুক্ত সকল এর জন্য,
২. , -তে অসীমভাবে ব্যবকলনযোগ্য,
৩. এর উল্লম্ব হেসিয়ান ধনাত্মক-নির্দিষ্ট।
মূল নিবন্ধ: সিমপ্লেকটিক জ্যামিতি
সিমপ্লেকটিক জ্যামিতি হচ্ছে সিমপ্লেকটিক স্থান (symplectic manifolds) নিয়ে আলোচনা। একটি প্রায় সিমপ্লেকটিক স্থান হচ্ছে প্রতিটি স্পর্শক-স্থানে মসৃণভাবে পরিবর্তনশীল, অবিচ্যুত (non-degenerate), তীর্যক-প্রতিসম (skew-symmetric), দ্বি-রৈখিক আকার সংবলিত একটি ব্যবকলনযোগ্য স্থান, অর্থাৎ, একটি অবিচ্যুত ২-আকার ω, যার নাম সিমপ্লেকটিক আকার। কোন সিমপ্লেকটিক স্থান হচ্ছে একটি প্রায় সিমপ্লেকটিক স্থান, যার জন্য সিমপ্লেকটিক আকার ω আবদ্ধ: dω = 0।
দুটি সিমপ্লেকটিক স্থানের মধ্যে এমন ডিফিওমরফিজম যা সিমপ্লেকটিক আকারটি সংরক্ষণ করে, তাকে সিমপ্লেকটো-মরফিজম বলে। কেবলমাত্র যুগ্ম (জোড়)-মাত্রাবিশিষ্ট ভেক্টর স্থানেই অবিচ্যুত, তীর্যক-প্রতিসম, দ্বি-রৈখিক আকারের অস্তিত্ব থাকতে পারে, সুতরাং সিমপ্লেকটিক স্থানসমূহের আবশ্যকভাবে যুগ্ম মাত্রা থাকে। মাত্রা ২ হলে, কোন সিমপ্লেকটিক স্থান হচ্ছে ক্ষেত্রফল বিশিষ্ট একটি পৃষ্ঠতল এবং সিমপ্লেকটো-মরফিজম হচ্ছে ক্ষেত্রফল-সংরক্ষণশীল ডিফিওমরফিজম। কোন যান্ত্রিক ব্যবস্থার দশা স্থান (phase space) হচ্ছে একটি সিমপ্লেকটিক স্থান এবং ইতোমধ্যেই এর অব্যক্ত উপস্থিতি দেখা যায়, বিশ্লেষণমূলক বলবিদ্যায় জোসেফ লুই লাগ্রাঁজ এর কাজে, ও পরবর্তীকালে কার্ল গুস্তাভ জ্যাকোবি আর উইলিয়াম রোয়ান হ্যামিলটন এর চিরায়ত বলবিদ্যার সূত্রায়নে।
রিমানীয় জ্যামিতি, যেখানে বক্রতা থেকে রিমানীয় স্থানের একটি স্থানিক অভেদ (local invariant) পাওয়া যায়, তার সাথে বৈসাদৃশ্যপূর্ণভাবে, দারবুঁ'র উপপাদ্যে বলা হয় যে, সকল সিমপ্লেকটিক স্থান হচ্ছে স্থানিকভাবে সমরূপী (locally isomorphic)। সিমপ্লেকটিক স্থানের একমাত্র অভেদসমূহ হচ্ছে সার্বিক (global) প্রকৃতির, এবং টপোলজির প্রেক্ষাপট থেকে সিমপ্লেকটিক জ্যামিতিতে মুখ্য একটি ভূমিকা পালন করে। সিমপ্লেকটিক জ্যামিতির প্রথম ফলাফল সম্ভবত পোয়াঁকারে-বার্কফ উপপাদ্য (Poincaré–Birkhoff theorem), যার ধারণা দেন অঁরি পোয়াঁকারে এবং পরে জি.ডি. বার্কফ কর্তৃক ১৯১২ সালে তা প্রমাণিত হয়। এটা দাবি করে যে, যদি কোন চাক্রিক-বস্তুর (annulus) ক্ষেত্রফল-সংরক্ষণশীল রূপান্তর, এর সীমারেখায় অবস্থিত প্রতিটি উপাদানকে বিপরীত দিকে মোচড় দেয়, তাহলে ঐ রূপান্তরের কমপক্ষে দুটি নির্দিষ্ট বিন্দু রয়েছে।[5]
মূল নিবন্ধ: স্পর্শ জ্যামিতি
স্পর্শ জ্যামিতি নির্দিষ্ট কিছু অযুগ্ম (বিজোড়)-মাত্রিক স্থান (manifolds) নিয়ে কাজ করে। এটি সিমপ্লেকটিক জ্যামিতির কাছাকাছি, এবং পরেরটার মত এটারও উদ্ভব ঘটেছে চিরায়ত বলবিদ্যার প্রসঙ্গে। কোন -মাত্রিক স্থানে কোন স্পর্শ কাঠামো হচ্ছে কোন স্পর্শক-জোটের (tangent bundle) একটি মসৃণ অধি-সমতলীয় ক্ষেত্র , যা এর উপরস্থ কোন ব্যবকলনযোগ্য ফাংশনের লেভেল সেটের সাথে সংযোজিত হওয়া থেকে যতটা সম্ভব দূরে থাকে (এর কারিগরি পরিভাষা হচ্ছে "সম্পূর্ণ অ-সমাকলনযোগ্য স্পর্শক অধি-সমতলীয় বণ্টন")। প্রতিটি বিন্দু p এর কাছে, একটি অধি-সমতল বণ্টন নির্ণয় করা হয় একটি অবিলীয়মান ১-আকার দ্বারা, যা একটি অবিলীয়মান ফাংশন দ্বারা গুণন পর্যন্ত অনন্য থাকে:
এর ওপর কোন স্থানিক ১-আকার একটি স্পর্শ আকার হবে যদি -এ বহিঃস্থ অন্তরকের (exterior derivative) সীমাবদ্ধতা একটি অবিচ্যুত দুই-আকার হয় এবং এভাবে এর ওপর প্রত্যেক বিন্দুতে একটি সিমপ্লেকটিক কাঠামো উৎপন্ন করে। যদি বণ্টন -কে একটি সর্বজনীন এক-আকার দ্বারা সংজ্ঞায়িত করা যায়, তাহলে এই আকারটি স্পর্শ আকার হবে যদি ও কেবল যদি এর ঊর্ধ্ব-মাত্রিক আকার
,
এর ওপর একটি আয়তন-আকার (volume form) হয়, অর্থাৎ, কোথাও-ই বিলীন হয় না। স্পর্শ জ্যামিতির জন্যও অনুরূপ দারবুঁ উপপাদ্য সত্য হয়: কোন অযুগ্ম-মাত্রিক স্থানে সকল স্পর্শ কাঠামো স্থানিকভাবে সমরূপী (isomorphic) এবং উপযুক্ত স্থানাংক ব্যবস্থা নির্বাচনের মাধ্যমে একটি নির্দিষ্ট স্থানিক অভিলম্ব (local normal) আকারে নিয়ে আসা যায়।
জটিল ব্যবকলনীয় জ্যামিতি হচ্ছে জটিল টপোলজিক্যাল স্থান-বিষয়ক অধ্যয়ন। একটি প্রায় জটিল স্থান (ম্যানিফোল্ড) হচ্ছে একটি বাস্তব স্থান, যেখানে ধরনের একটি টেন্সর, অর্থাৎ, একটি ভেক্টর বান্ডল এন্ডোমরফিজম (প্রায় জটিল কাঠামো বলা হয়) বিদ্যমান।
, যেন হয়।
এই সংজ্ঞা থেকে বোঝা যায় যে, একটি প্রায় জটিল ম্যানিফোল্ড হচ্ছে যুগ্ম-মাত্রিক।
একটি প্রায় জটিল ম্যানিফোল্ডকে জটিল বলা হয় যদি হয়, যেখানে হচ্ছে এর সাথে সংশ্লিষ্ট ধরনের একটি টেন্সর, যাকে নিয়েনহাউস টেন্সর (Nijenhuis tensor অথবা, কখনো কখনো ব্যবর্তন) বলা হয়। একটি প্রায় জটিল ম্যানিফোল্ড জটিল হবে যদি ও কেবল যদি এতে হলোমরফিক (জটিল সমতলে ব্যবকলনযোগ্য ফাংশন) স্থানাংক মানচিত্র থাকে। কোন প্রায় জটিল কাঠামো এবং তার সাথে রিমানীয় পরিমাপ এর দ্বারা একটি প্রায় হারমিশিয়ান কাঠামো পাওয়া যায়, যা নিম্নোক্ত সামঞ্জস্যতার শর্ত পূরণ করে:
,
একটি প্রায় হারমিশিয়ান কাঠামো স্বাভাবিকভাবে একটি ব্যবকলনীয় দ্বি-আকারকে (two-form) সংজ্ঞায়িত করে,
।
নিম্নোক্ত শর্ত দুটি পরস্পর সমতুল্য:
যেখানে হচ্ছে এর লেভি-সিভিটা সংযোগ। এক্ষেত্রে, -কে বলা হয় কেহ্লার কাঠামো, এবং কোন কেহ্লার স্থান (Kähler manifold) হচ্ছে কেহ্লার কাঠামো বিশিষ্ট একটি স্থান। বিশেষত, কোন কেহ্লার স্থান একই সাথে জটিল এবং সিমপ্লেকটিক স্থান। কেহ্লার স্থানের (হজ ম্যানিফোল্ডের একটি শ্রেণি) একটি বৃহৎ শ্রেণি পাওয়া যায়, মসৃণ স্থানের জটিল প্রক্ষেপণশীল প্রকরণ (projective varieties) থেকে।
CR জ্যামিতি (Cauchy-Riemann বা Complex-Real) হচ্ছে কোন জটিল ম্যানিফোল্ডের ডোমেইন সীমার নিজস্ব জ্যামিতি নিয়ে পর্যালোচনা।
ব্যবকলনীয় টপোলজি হচ্ছে কোন মেট্রিক বা সিমপ্লেকটিক আকারহীন সর্বজনীন জ্যামিতিক অভেদাবলি নিয়ে অধ্যয়ন।
ব্যবকলনীয় টপোলজির সূচনা হয় স্বাভাবিক প্রক্রিয়াসমূহ যেমন- স্বাভাবিক ভেক্টর বান্ডলের লি অন্তরক (Lie derivative) এবং আকারসমূহের দে রাম ডিফারেন্সিয়াল (de Rham differential) থেকে। লি অ্যালজেব্রয়েড (Lie algebroids) ছাড়াও, কুরাঁ অ্যালজেব্রয়েডও (Courant algebroids) এতে গুরুত্বপূর্ণ ভূমিকা পালন করে।
কোন লি গুচ্ছ হচ্ছে মসৃণ ম্যানিফোল্ড শ্রেণিভুক্ত একটি গুচ্ছ। বীজগাণিতিক ধর্মাবলি ছাড়াও এর ব্যবকলনীয় জ্যামিতিক ধর্মাবলিও বিদ্যমান। এর সবচেয়ে সুস্পষ্ট সম্পাদ্য হচ্ছে কোন লি বীজগণিত, যা কোন একক ক্ষেত্রে লি বন্ধনী-বিশিষ্ট, বাম-অপরিবর্তনশীল ভেক্টর-ক্ষেত্রের মধ্যে একটি স্পর্শক-স্থান। কাঠামো তত্ত্ব ছাড়াও সেখানে প্রতিনিধিত্ব তত্ত্বের বিস্তৃত প্রয়োগ রয়েছে।
আধুনিক ব্যবকলনীয় জ্যামিতিতে ভেক্টর বান্ডল, মুখ্য বান্ডল, এবং বান্ডল সংযোগের মত উপকরণগুলোর ভূমিকা বিশেষভাবে গুরুত্বপূর্ণ। একটি মসৃণ স্থানে (smooth manifold) সর্বদা একটি স্বাভাবিক ভেক্টর বান্ডল বিদ্যমান থাকে, যা স্পর্শক বান্ডল নামে পরিচিত। মোটামুটিভাবে বললে, এই কাঠামোটি এককভাবে শুধুমাত্র কোন স্থানের ওপর বিশ্লেষণের ক্ষেত্রেই স্বয়ংসম্পূর্ণ, জ্যামিতিক প্রয়োগের ক্ষেত্রে, এছাড়াও, স্পর্শক-স্থানটির বিভিন্ন বিন্দুর সাথে সম্পর্ক স্থাপন করার জন্য, কোন একটি পন্থা যেমন- সমান্তরাল পরিবহন (parallel transport) এর ধারণা প্রয়োজন হয়। অ্যাফিন সংযোগের মাধ্যমে এর একটি গুরুত্বপূর্ণ উদাহরণ দেওয়া যায়। পরিবেষ্টিত কোন ইউক্লিডীয় স্থান, যার পরিমাপ ও সমান্তরালতার প্রমিত সংজ্ঞা জানা আছে, তার মাধ্যমে আবিষ্ট একটি স্বাভাবিক পথ-ভিত্তিক সমান্তরালতা ব্যবহার করে, -তে বিদ্যমান কোন পৃষ্ঠের ভিন্ন ভিন্ন বিন্দুতে, স্পর্শক-তল শনাক্ত করা যায়। রিমানীয় জ্যামিতিতে লেভি-সিভিটা সংযোগ একই রকমের ভূমিকা পালন করে (লেভি-সিভিটা সংযোগ কোন স্থানে যে কোন রিমানীয় পরিমাপ পদ্ধতিতে, কোন পথ-ভিত্তিক সমান্তরালতাকে সংজ্ঞায়িত করে)। আরও সাধারণভাবে, ব্যবকলনীয় জ্যামিতি এমন স্থানসমূহ বিবেচনা করে যাদের ভেক্টর বান্ডল ও যে কোন একটি অ্যাফিন সংযোগ রয়েছে, যা নির্দিষ্ট কোন পরিমাপ পদ্ধতিতে সংজ্ঞায়িত নয়। পদার্থবিদ্যায়, এই স্থান হতে পারে স্থান-কাল অবিচ্ছিন্নতা এবং এর আনুষঙ্গিক বান্ডল ও সংযোগসমূহ বিভিন্ন ভৌত ক্ষেত্রের সাথে সম্বন্ধযুক্ত থাকে।
অষ্টাদশ শতকের গোড়া থেকে মধ্যভাগ পর্যন্ত, ব্যবকলনীয় জ্যামিতি অধ্যয়ন করা হতো বাহ্যিক দৃষ্টিকোণ থেকে: বক্ররেখা ও তলকে উচ্চতর মাত্রার ইউক্লিডীয় স্থানে অবস্থিত বলে বিবেচনা করা হতো (উদাহরণস্বরূপ, কোন পরিবেষ্টিত ত্রিমাত্রিক স্থানে অবস্থিত কোন পৃষ্ঠতল)। এর সবচেয়ে সরলতম ফলাফল পাওয়া যায় বক্ররেখা এবং তলের ব্যবকলনীয় জ্যামিতিতে। অন্তর্নিহিত দৃষ্টিকোণের বিকাশ ঘটে রিমানের কাজের মাধ্যমে, যেখানে কোন জ্যামিতিক বস্তুর “বাইরে” যাবার কথা বলা যায় না, কেননা তা মুক্তভাবে-অবস্থিত বলে বিবেচনা করা হয়। গাউসের অসাধারণ উপপাদ্য (theorema egregium), এর একটি মৌলিক ফলাফল কেননা গাউসীয় বক্রতা একটি অন্তর্নিহিত অভেদ।
অন্তর্নিহিত দৃষ্টিকোণ অনেক বেশি নমনীয়। উদাহরণস্বরূপ, আপেক্ষিকতার ক্ষেত্রে যেখানে স্থান-কাল স্বাভাবিকভাবেই বহিঃস্থ কিছু হতে পারে না (“বাইরে” হলে সেখানে কী থাকতো?), সেখানে এটি কার্যকরী। তবে এর প্রায়োগিক জটিলতাও রয়েছে: বক্রতা ও সংযোগসমূহের সংজ্ঞাগুলো দৃষ্টিগোচরভাবে আর অতটা সহজবোধ্য থাকে না।
এই দুই দৃষ্টিকোণের সমন্বয় ঘটানো সম্ভব, এর অর্থ হচ্ছে, বাহ্যিক জ্যামিতিকে অন্তর্নিহিত অংশের সাথে সংযুক্ত একটি কাঠামো হিসেবে বিবেচনা করা যায় (ন্যাশের সংস্থাপন উপপাদ্য দেখুন)। জ্যামিতিক ক্যালকুলাসের প্রথানুসারে, কোন স্থান (ম্যানিফোল্ড) এর অন্তর্নিহিত ও বাহ্যিক- উভয় ধরনের জ্যামিতিকে একটি একক দ্বিভেক্টর-মানবিশিষ্ট এক-আকার (one-form) দ্বারা প্রকাশ করা যায়, যাকে আকার অপারেটর (shape operator) বলা হয়।[6]
বিজ্ঞান ও গণিতের অন্যান্য ক্ষেত্রে ব্যবকলনীয় জ্যামিতি কীভাবে প্রয়োগ করা হয়, তার কিছু উদাহরণ নিম্নে উল্লেখ করা হলো।
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.