From Wikipedia, the free encyclopedia
В механиката на флуидите, принципът на Бернули гласи, че за невискозен флуид, увеличението на скоростта на потока е придружено винаги или с намаляване на налягането, или с намаляване на потенциалната енергия на флуида. Принципът на Бернули носи името на Даниел Бернули, швейцарски математик и физик, който го публикува за пръв път в неговата книга Hydrodynamica през 1738 г.[1]
Принципът на Бернули важи както за свиваеми флуиди (въздух), така и за несвиваеми (каквито са повечето течни потоци). Връзката между увеличение на скоростта и намаляване на налягането е вярна само за потоци с ниско махово число, т.е. скорост на потока по-малка от скоростта на звука в дадената среда.
Принципът на Бернули се извежда от Закона за запазване на енергията, който гласи, че във всяка точка от дадена токова линия пълната механична енергия е една и съща, т.е. сборът от всички енергии е константа. Оттам увеличение на скоростта на флуида води до увеличаване на кинетичната енергия, следователно до намаляване на налягането или потенциалната енергия.
Уравнението на Бернули, което може да бъде приложено за всеки флуиден елемент по протежението на дадена токова линия, се записва обичайно:
където:
Това уравнение се обобщава за флуид в потенциала на коя да е консервативна сила:
където е потенциалът на полето. Двете уравнения са еквивалентни за гравитационния потенциал, който се записва Ψ = gz за материални точки близо до земната повърхност (т.е. височината z << RЗемя, където RЗемя е радиусът на Земята).
Това уравнение е валидно в рамките на двете хипотези, под които е изведено:
При реалните флуиди триенето не е пренебрежимо, трябва да се вземат предвид и хидравличните загуби, поради което енергията на потока намалява.
За свиваем флуид с баротропично уравнение на състоянието, уравнението на Бернули придобива вида:
където:
Често разглежданите флуиди са адиабатични (разглежданите явления протичат достатъчно бързо, че увеличението на ентропията да може да се пренебрегне). Тогава, горното уравнение придобива вида:
Новите величини в горното уравнение са:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.