непустое мноства разам з вызначанаю на ім бінарнай аперацыяй, якая задавальняе пэўныя ўмовы From Wikipedia, the free encyclopedia
Гру́па — непустое мноства разам з вызначанаю на ім бінарнай аперацыяй, якая задавальняе пэўныя ўмовы (а іменна, замкнёнасць мноства адносна гэтай аперацыі, спалучальны закон, наяўнасць нейтральнага элемента і наяўнасць для кожнага элемента адваротнага да яго).
У дадзеным выпадку бінарная аперацыя, па сутнасці, з'яўляецца правілам, згодна з якім кожнай упарадкаванай пары элементаў мноства ставіцца ў адпаведнасць нейкі трэці элемент таго ж мноства. Акрамя таго, групавая аперацыя павінна падпарадкоўвацца спалучальнаму закону, у мностве павінен існаваць т.зв. нейтральны элемент, а таксама для кожнага элемента мноства ў гэтым мностве павінен існаваць адваротны (адносна групавой аперацыі) элемент.
Сам тэрмін «група» належыць выдатнаму французскаму матэматыку Эварысту Галуа. Аднак некаторыя тэарэмы тэорыі груп былі даказаны яшчэ Лагранжам.
Гру́пай называецца непустое мноства G разам з бінарнай аперацыяй якая задавальняе наступныя ўмовы:
Заўвага: група не з'яўляецца проста мноствам; увогуле кажучы, на адным і тым жа мностве можна ўвесці розныя бінарныя аперацыі, адносна кожнай з якіх мноства будзе ўтвараць розныя групы. Іменна таму групу пазначаюць як упарадкаваную пару хоць часам, калі аперацыя відавочная, дзеля зручнасці знак аперацыі апускаюць і пішуць проста "група G ".
Часцей за ўсё, дзеля зручнасці, групавую аперацыю называюць множаннем (хоць часам анічога агульнага між гэтай аперацыяй і звычайным множаннем няма). Адпаведна, нейтральны элемент e называюць адзінкаю групы. Пры гэтым сама́ аперацыя абазначаецца гэтак са́ма як і звычайнае множанне:
Такія назвы і абазначэнні называюцца мультыплікаты́ўнымі.
Заўвага: нягледзячы на такую назву, гэта не азначае нават таго, што групавая аперацыя падпарадкоўваецца перамяшчальнаму закону.
Калі групавая аперацыя падпарадкоўваецца перамяшчальнаму закону (г.зн. G — абелева група), то яе называюць складаннем і абазначаюць знакам (такое «складанне» можа быць зусім непадобным да звычайнага складання). Пры гэтым нейтральны элемент e называюць нулём абелевай групы G і абазначаюць яго як 0; адваротны элемент a-1 называюць процілеглым элементам і пішуць -a. Такія назвы і абазначэнні называюцца адыты́ўнымі.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.