Loading AI tools
من ويكيبيديا، الموسوعة الحرة
في الهندسة الأقليدية، المستطيل هو شكل ثنائي الأبعاد، وهو رباعي أضلاع حيث تكون زواياه الأربعة قائمة. ينبع من هذا أنّ للمستطيل زوجين من الضلعين المتقابلين والمتساويين؛ أي أنّ المستطيل هو حالة خاصة من متوازي أضلاع تكون كل زواياه قائمة. كما يعتبر المربع حالة خاصة من المستطيل تكون فيها أطوال الأضلاع الأربعة متساوية.[1][2]
النوع | |
---|---|
الحواف |
4 |
رمز شليفلي |
{}×{} |
مخطط كوكستير | |
زمرة تناظرات |
D2, [2], (*22) |
مضلع نظير | |
الخصائص |
نقول عن شكل رباعي بسيط أنه مستطيل إذا وفقط إذا تحققت أحد الشروط:[3][4]
يسمى الضلع الأطول في المستطيل الطول، والضلع الأقصر العرض. وتكون مساحة المستطيل حاصل ضرب طوله وعرضه.
إن المستطيل مضلع دائري ويشكل كل قطر في المستطيل قطراً للدائرة المحيطة، وفيه تكون جميع الزوايا قائمة، وكل ضلعين متقابلين متوازيين ومتساويين. لأنّه نوع خاص من متوازي أضلاع، فإنّ أقطار المستطيل متساوية الطول وتنصّف بعضها البعض. بعكس المربع والمعين فإنّ أقطار المستطيل غير متعامدة ولا تنصف زواياه ما لم يكن معيناً. للمستطيل محورا تناظر، وكل منهما مستقيم يمر من منتصفي ضلعين متقابلين. لأنّ زوايا المستطيل قائمة، بالإمكان إيجاد طول قطره، c، من عرضه، a، وطوله، b، بواسطة قانون فيثاغورس:
في حساب التكامل، قد يستخدم المستطيل أيضًا في حساب تكامل ريمان التقريبي لتكامل دالّة، بواسطة تحويل المساحة الموجودة تحت الرسم البياني للدالة إلى سلسلة من المستطيلات ذات عرض صغير، ، وطول يساوي معدّل قيمة الدالة في الجوار .
محيط المستطيل: جمع جميع اضلاع المستطيل أي جمع طولهم
مساحة المستطيل: الطولْ x العرض
منتصفات أضلاع مضلع رباعي قطراه متعامدان تشكل مستطيلاً
يحقق المستطيل كغيره من الرباعيات الدائرية المبرهنة اليابانية في رباعي دائري[5] ، التي تنص على أن مراكز الدوائر الداخلية لمثلثات معينة داخل رباعي دائري تشكل رؤوس مستطيل.
كما يحقق المستطيل مبرهنة العلم البريطاني، باعتبار P نقطة على المستوي المتعلق بالمستطيل ABCD، فإن:[6] .
كل متوازي أضلاع قطراه متساويان هو مستطيل.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.