Loading AI tools
من ويكيبيديا، الموسوعة الحرة
في الرياضيات، عدد فيرما (بالإنجليزية: Fermat number) هو عدد صحيح موجب يكتب على شكل:
حيث n هو عدد صحيح غير سالب.[1][2] سمي كذلك نسبة إلى بيير دي فيرما لأنه هو أول من درس هذه الأعداد.
إذا كان العدد 2n + 1 عددا أوليا وكان n > 0 من الممكن برهان أن n هو من مضاعفات العدد 2.
لائحة أعداد فيرما الأولية المعروفة لا تحتوي على غير F0 وF1 وF2 وF3 وF4.
تحقق أعداد فيرما العلاقات ذاتية الاستدعاء التالية:
كلما توفر n ≥ 1.
كلما توفر n ≥ 2. يُبرهن على هذه العلاقات باستعمال البرهان بالترجع.
درست أعداد فيرما وأعداد فيرما الأولية من طرف عالم الرياضيات بيير دي فيرما، الذي حدس (ولكنه أعلن عدم إمكانه البرهان على ذلك) أن جميع أعداد فيرما هي أعداد أولية. بالفعل، فالأعداد F4,...,F0 هي أعداد أولية. ولكن هاته الحدسية دحضت من طرف ليونهارد أويلر عندما أثبت عام 1732 أن :
أثبت أويلر أن جميع العوامل القاسمة لأعداد فيرما تكتبن على الشكل k2n+1 + 1 ليثبت بعده إدوارد لوكاس أنهن تكتبن على الشكل k2n+2 + 1. (أي أنه أثبت بأن k الذي جاء في صيغة أويلر زوجي).
أعداد فيرما التسعة الأولى هن :
F0 | = | 21 | + | 1 | = | 3 | |
F1 | = | 22 | + | 1 | = | 5 | |
F2 | = | 24 | + | 1 | = | 17 | |
F3 | = | 28 | + | 1 | = | 257 | |
F4 | = | 216 | + | 1 | = | 65537 | |
F5 | = | 232 | + | 1 | = | 4,294,967,297 | |
= | 641 × 6,700,417 | ||||||
F6 | = | 264 | + | 1 | = | 18,446,744,073,709,551,617 | |
= | 274,177 × 67,280,421,310,721 | ||||||
F7 | = | 2128 | + | 1 | = | 340,282,366,920,938,463,463,374,607,431,768,211,457 | |
= | 59,649,589,127,497,217 × 5,704,689,200,685,129,054,721 | ||||||
F8 | = | 2256 | + | 1 | = | 115,792,089,237,316,195,423,570,985,008,687,907,853,269,984,665,640,564,039,457,584,007,913,129,639,937 | |
= | 1,238,926,361,552,897 × 93,461,639,715,357,977,769,163,558,199,606,896,584,051,237,541,638,188,580,280,321 | ||||||
العام | المخترع | عدد فيرما | العامل |
---|---|---|---|
1732 | أويلر | ||
1732 | أويلر | (معملة بشكل كامل) | |
1855 | توماس كلوسين | ||
1855 | كلوسين | (معملة بشكل كامل) | |
1877 | بيرفوشين | ||
1878 | بيرفوشين | ||
1886 | Seelhoff | ||
1899 | Cunningham | ||
1899 | Cunningham | ||
1903 | Western | ||
1903 | Western | ||
1903 | Western | ||
1903 | Western | ||
1903 | Cullen | ||
1906 | Morehead | ||
1925 | Kraitchik | ||
لأي عدديين صحيحين موجبين m < n العلاقة التالية تتحقق
طور كارل فريدريش غاوس نظرية الدورات الغاوسية في كتابه استفسارات حسابية، فأعطى شرطا كافيا لقابلية متعددٍ للأضلاع للإنشاء بالمسطرة والبركار. ادعى غاوس أن شرطه ليس كافيا فحسب، وإنما هو ضروري أيضا، ولكنه لم ينشر برهانه على ذلك. جاء بالبرهان الكامل عام 1837 عالم الرياضيات الفرنسي بيير فانتزل، مما جعل هذه النتيجة تعرف باسم مبرهنة غاوس-فانتزل.
انظر إلى مؤشر أويلر.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.