يعتبر القياس في الرياضيات دالة تقوم بربط عدد ما يدعى الحجم أو السعة أو الاحتمال بمجموعة جزئية من مجموعة كبرى. وهذا المفهوم للقياس الرياضي يعتبر أساسيا في التحليل الرياضي ونظرية الاحتمالات. تطور هذا المفهوم من الحاجة لإجراء مكاملة على مجموعات اعتبارية غير معينة بدلا من إجراء التكامل بالطريقة التقليدية.[1]

معلومات سريعة صنف فرعي من, جزء من ...
قياس
Thumb
معلومات عامة
صنف فرعي من
جزء من
يدرسه
تعريف الصيغة
عدل القيمة على Wikidata
مجال الدالة
صورة الدالة
ممثلة بـ
إغلاق
Thumb

نظرية القياس تشكل أحد أجزاء التحليل الحقيقي الذي يبحث في جبر-σ، القياسات، دوال القياس والتكاملات. وتعتبر ذات أهمية خاصة في نظرية الاحتمالات والإحصاء.

التعريف الرسمي

رسمياً، القياس μ هو عبارة عن دالة معرفة على جبر-σ يدعى (Σ) على المجموعة X بقيم ضمن المجال [0، ] بحيث يتم تحقيق الخواص التالية :

  • قابلية الإضافة العدودة أو قابلية الإضافة-سيغما: إذا كان E1، E2، E3،... عبارة عن متتالية عدودة من مجموعات متفارقة disjoint sets مثنى مثنى ضمن Σ، فيكون قياس اجتماع جميع E مساويا ل مجموع القياسات لجميع E:

The الثلاثية (X،Σ،μ) تدعى عندها فضاء القياس measure space، وعناصر Σ تدعى مجموعات مقيسة أو قابلة للقياس measurable sets.

مراجع

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.