From Wikipedia, the free encyclopedia
In wiskunde is 'n kombinasie 'n manier om 'n paar dinge te kies uit van 'n groter groep, waar die volgorde nie saak maak nie (in teenstelling met permutasies). Die bekendste voorbeeld van 'n kombinasie is die staatslotery waar mense moet raai watter 6 balle uit 'n totaal van 49 balle getrek gaan word (die volgorde is nie belangrik nie).
Die hoeveelheid maniere om k items in enige volgorde te kies uit 'n stel van n items is:
Dit kan ook soos volg in terme van fakulteit uitgedruk word:
In MS Excel is:
LW: Hierdie geld slegs wanneer unieke items gekies word uit 'n eindige stel. Dus, indien die item gekies is, dan is dit nie meer beskikbaar om weer gekies te word nie. Wanneer dieselfde items weer en weer gekies kan word, is die aantal permutasies bloot nx, waar x die aantal raaiskote is (kyk muntstukke-voorbeeld hier onder).
Kom ons neem die staatslotery as voorbeeld:[1]
In die lotery is daar 49 balle waarvan 6 balle getrek word (die volgorde is nie belangrik nie). Die kans dat die eerste bal reg voorspel word, is 1 uit 49. Omdat daar nou 48 balle oor is, is die kans dat die tweede bal reg voorspel word nou 1 uit 48 en 1 uit 47 vir die derde, ensovoorts. Dus is die kans om al 6 balle reg te voorspel 1 uit 49×48×47×46×45×44 = 1 uit 10 068 347 520. Dit kan ook soos volg geskryf word: .
Dit is 'n baie groot getal omdat hierdie aanvaar dat die volgorde ook reg moet wees (dit is dus 'n permutasie). In die lotery is die volgorde egter nie belangrik nie. Daar is 6×5×4×3×2×1 = 6! = 720 maniere hoe hierdie 6 balle getrek kan word. Dit moet deur die permutasiegetal gedeel word. Dus is die aantal kombinasies om 6 balle uit 'n groep van 49 balle te trek 10 068 347 520/720 = 13 983 816.
'n Ander benadering is om nooit te aanvaar dat die balle in 'n spesifieke volgorde getrek moet word nie. Die waarskynlikheid dat die eerste bal een van die regtes is, is nou nie meer 1 uit 49 nie (soos in die geval van 'n permutasie), maar 6 uit 49. Die waarskynlikheid dat die tweede bal een van die regte balle is, is 5 uit 48, ensovoorts. Dus kan die aantal permutasies soos volg geskryf word:
Die waarskynlikheid is bloot die resiprook van die hoeveelheid kombinasies, dus is die waarskynlikheid 1 uit elke 13 983 816 = 1/13 983 816 = 7.15×10-8
Antwoord: Dit is voor die hand liggend dat daar 2 moontlikhede. Dus is die kans/waarskynlikheid dat dit sal gebeur 1 uit elke 2 = 1/2 = 0.5 = 50%
Antwoord: Met elke opskiet is daar 2 verskillende kombinasies, dus is die verskillende hoeveelheid kombinasies: 2×2×2 = 23 = 8.
Dus is die waarskynlikheid/kans dat dit sal gebeur 1 uit elke 8 = 1/8 = 0.125 = 12.5%
Antwoord: Hierdie werk presies dieselfde as die lotery hierbo.
n=52 en k=4.
Die aantal verskillende kombinasies =
Die waarskynlikheid is die resiprook en is dus 1/270 725 = 3.69×10-6
Of: die waarskynlikheid om die eerste kaart te kies is 4/52, die tweede is 3/51 ens. Dus:
Sekere volgorde:
Wanneer die vier A's in 'n sekere volgorde getrek moet word, is die aantal verskillende permutasies:
Die waarskynlikheid is dus die resiprook: 1/6497400 = 1.539 × 10-7
of, die waarskynlikheid dat die eerste kaart reg sal wees is 1/52, die tweede 1/51, die derde 1/50 en die vierde 1/49. Dus is die waarskynlikheid:
Antwoord: Aanvaar dat die aap slegs die getalle 0 tot 9 op die telefoon sal druk en dat wat hy druk, heeltemal ewekansig is.
Met elke druk van 'n knoppie kan die aap dus 1 uit enige van 10 getalle kies. Dus kan een item meer as een keer gekies word en dus is die waarskynlikheid:
As aanvaar word dat die aap nie dieselfde knoppie meer as een keer sal druk nie, dan word die waarskynlikheid:
As daar vyf verskillende blokkies is wat op 10 verskillende plekke neergesit kan word, wat is die kans dat die aap dit in geen spesifieke volgorde op die regte plekke sal sit:
Dus is die waarskynlikheid die resiprook = 1/252 = 0.003968 = 0.3968% (Hierdie is dieselfde as die lotery voorbeeld.)
As die aap die blokkies in die regte volgorde ook moet neersit, dan is die waarskynlikheid:
Dus is die waarskynlikheid die resiprook: 1/30240 = 3.307×10-5 = 0.003307%
Die verskillende hoeveelheid kombinasies wat 'n mens met twee dobbelstene kan gooi is 6×6 = 36
Om 2 te gooi, is daar slegs een moontlike kombinasie: jy moet 'n 1 en 'n 1 gooi. Dus is die waarskynlikheid 1 uit 36. Die volgende tabel wys die waarskynlikheid vir verskillende getalle:
Getal | Kombinasies | Waarskynlikheid |
---|---|---|
2 | (1,1) | 1/36 |
3 | (1,2)(2,1) | 2/36 |
4 | (1,3)(2,2)(3,1) | 3/36 |
5 | (1,4)(2,3)(3,2)(4,1) | 4/36 |
6 | (1,5)(2,4)(3,3)(4,2)(5,1) | 5/36 |
7 | (1,6)(2,5)(3,4)(4,3)(5,2)(6,1) | 7/36 |
8 | (2,6)(3,5)(4,4)(5,3)(6,2) | 5/36 |
9 | (3,6)(4,5)(5,4)(6,3) | 4/36 |
10 | (4,6)(5,5)(6,4) | 3/36 |
11 | (5,6)(6,5) | 2/36 |
12 | (6,6) | 1/36 |
Hierdie voorbeeld is 'n mengsel van 'n kombinasie en 'n permutasie.
Die hoeveelheid kombinasies is (waar "6" 'n ses op die dobbelsteen is en "0" enigiets anders is):
Dus is daar 10 kombinasies. Of:
Die waarskynlikheid vir die eerste kombinasie is soos volg:
1. Die waarskynlik dat die eerste gooi 'n 6 is, is
2. Die waarskynlik dat die tweede gooi 'n 6 is, is
3. Die waarskynlik dat die derde gooi nie 'n 6 is nie, is
4. Die waarskynlik dat die vierde gooi nie 'n 6 is nie, is
5. Die waarskynlik dat die vyfde gooi nie 'n 6 is nie, is
Dus is die waarskynlikheid vir die eerste kombinasie hierbo:
Die waarskynlikheid van al die verskillende kombinasies is dieselfde. Dus is die totale waarskynlikheid om twee sesse te gooi met 'n dobbelsteen as jy 5 kanse kry:
LW, as die vraag gevra het om die waarskynlikheid te bepaal om 'n minimum van 2 sesse te gooi, moes die verskillende kombinasies om drie sesse, vier sesse, vyf sesse en ses sesse ook in ag geneem word. Dus:
Kombinasies om 2 sesse te gooi | Kombinasies om 3 sesse te gooi | Kombinasies om 4 sesse te gooi | Kombinasies om 5 sesse te gooi |
---|---|---|---|
|
|
|
|
3 sesse:
Verskillende kombinasies om drie sesse te gooi:
Die waarskynlikheid vir elke kombinasie is dieselfde:
Die waarskynlikheid van al die verskillende kombinasies is dieselfde. Dus is die totale waarskynlikheid:
4 sesse:
Verskillende kombinasies om vier sesse te gooi:
Die waarskynlikheid vir elke kombinasie is dieselfde:
Die waarskynlikheid van al die verskillende kombinasies is dieselfde. Dus is die totale waarskynlikheid:
5 sesse:
Daar is slegs een kombinasie om vyf sesse te gooi:
Die waarskynlikheid om vyf sesse te gooi is:
Die waarskynlikheid van al die verskillende kombinasies is dieselfde. Dus is die totale waarskynlikheid:
Totale waarskynlikheid om ten minste twee sesse te gooi as jy vyf kanse het:
Dus is die waarskynlikheid om ten minste twee sesse te gooi met 'n dobbelsteen indien jy vyf kanse kry:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.