在统计力学中,玻茨模型(Potts模型)是易辛模型的推广,它描述晶格上的自旋。
玻茨模型可应用于铁磁性和固态物理学。
| 此條目需要 精通或熟悉統計學、物理的编者参与及协助编辑。 (2020年2月11日) |
玻茨模型的哈密頓量是:
其中 是晶格上的自旋变数, δ(si, sj) 是克罗内克函数。
当 si = sj 时,该函数等于1,否则等于0。
q=2的玻茨模型等于易辛模型(Jp = -2Jc )。
有时会引入磁场h:
其中 β=1/kT 的T是温度,k是波茲曼常數。
- Ashkin, Julius; Teller, Edward. Statistics of Two-Dimensional Lattices With Four Components. Phys. Rev. 1943, 64 (5–6): 178–184. Bibcode:1943PhRv...64..178A. doi:10.1103/PhysRev.64.178.
- Graner, François; Glazier, James A. Simulation of Biological Cell Sorting Using a Two-Dimensional Extended Potts Model. Phys. Rev. Lett. 1992, 69 (13): 2013–2016. Bibcode:1992PhRvL..69.2013G. PMID 10046374. doi:10.1103/PhysRevLett.69.2013.
- Potts, Renfrey B. Some Generalized Order-Disorder Transformations. Mathematical Proceedings. 1952, 48 (1): 106–109. Bibcode:1952PCPS...48..106P. doi:10.1017/S0305004100027419.
- Wu, Fa-Yueh. The Potts model. Rev. Mod. Phys. 1982, 54 (1): 235–268. Bibcode:1982RvMP...54..235W. doi:10.1103/RevModPhys.54.235.
- Friedrich, F.; Kempe, A.; Liebscher, V.; Winkler, G. Complexity penalized M-estimation: fast computation. Journal of Computational and Graphical Statistics. 2008, 17 (1): 201–224. MR 2424802. doi:10.1198/106186008X285591.
- Boykov, Y.; et., al. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2001: 1222–1239.
- Selke, Walter; Huse, David A. Interfacial adsorption in planar Potts models. Zeitschrift für Physik B. 1983, 50 (2): 113–116. Bibcode:1983ZPhyB..50..113S. doi:10.1007/BF01304093.