希爾伯特第二十一問題
来自维基百科,自由的百科全书
希爾伯特第二十一問題是希爾伯特的23個問題之一:給定及一個線性表示(給定),是否存在一組上的Fuchs方程,使得其單值群由給出?
現況
此問題的答案決定於其表述:如果我們容許明顯的奇異點(即:其單值群是平凡的),並在複流形上的向量叢及其聯絡的意義下理解Fuchs方程,則答案是肯定的;否則存在反例。這是L. Plemelj、G. Birkhoff、I. Lappo-Danilevskij、P. Deligne與A. Bolibrukh等數學家的工作。[1][2][3][4][5]
此問題有時亦稱為黎曼-希爾伯特問題。數學家柏原正樹與Zoghman Mebkhout已藉助D-模的抽象語言將此結果推廣到高維情形,稱作黎曼-希爾伯特對應。
文獻
- A. Beauville, Equations différentielles à points singuliers réguliers d'apres Bolybrukh, Sem. Bourbaki , 1992/3(1993) pp. 103–120
- A. Borel Algebraic D-modules ISBN 0-12-117740-8
- P. Deligne, Equations differentials a points singuliers reguliers, Springer Lecture notes in mathematics 163 (1970).
- M. Kashiwara, Faiseaux constructibles et systems holonomes d'equations aux derivees partielles lineaires a points singuliers reguliers, Se. Goulaouic-Schwartz, 1979-80, Exp. 19.
- Z. Mebkhout, Sur le probleme de Hilbert-Riemann, Lecture notes in physics 129 (1980) 99-110.
外部連結
Wikiwand - on
Seamless Wikipedia browsing. On steroids.