The figure shows that the constraint region defined by the norm is a square rotated so that its corners lie on the axes (in general a cross-polytope), while the region defined by the norm is a circle (in general an n-sphere), which is rotationallyinvariant and, therefore, has no corners. As seen in the figure, a convex object that lies tangent to the boundary, such as the line shown, is likely to encounter a corner (or a higher-dimensional equivalent) of a hypercube, for which some components of are identically zero, while in the case of an n-sphere, the points on the boundary for which some of the components of are zero are not distinguished from the others and the convex object is no more likely to contact a point at which some components of are zero than one for which none of them are.
Making λ easier to interpret with an accuracy-simplicity tradeoff
The lasso can be rescaled so that it becomes easy to anticipate and influence the degree of shrinkage associated with a given value of .[6] It is assumed that is standardized with z-scores and that is centered (zero mean). Let represent the hypothesized regression coefficients and let refer to the data-optimized ordinary least squares solutions. We can then define the Lagrangian as a tradeoff between the in-sample accuracy of the data-optimized solutions and the simplicity of sticking to the hypothesized values.[7] This results in
where is specified below. The first fraction represents relative accuracy, the second fraction relative simplicity, and balances between the two.
Given a single regressor, relative simplicity can be defined by specifying as , which is the maximum amount of deviation from when . Assuming that , the solution path can be defined in terms of :
If , the ordinary least squares solution (OLS) is used. The hypothesized value of is selected if is bigger than . Furthermore, if , then represents the proportional influence of . In other words, measures in percentage terms the minimal amount of influence of the hypothesized value relative to the data-optimized OLS solution.
If an -norm is used to penalize deviations from zero given a single regressor, the solution path is given by
. Like , moves in the direction of the point when is close to zero; but unlike , the influence of diminishes in if increases (see figure). Given multiple regressors, the moment that a parameter is activated (i.e. allowed to deviate from ) is also determined by a regressor's contribution to accuracy. First,
An of 75% means that in-sample accuracy improves by 75% if the unrestricted OLS solutions are used instead of the hypothesized values. The individual contribution of deviating from each hypothesis can be computed with the x matrix
where . If when is computed, then the diagonal elements of sum to . The diagonal values may be smaller than 0 or, less often, larger than 1. If regressors are uncorrelated, then the diagonal element of simply corresponds to the value between and .
A rescaled version of the adaptive lasso of can be obtained by setting .[8] If regressors are uncorrelated, the moment that the parameter is activated is given by the diagonal element of . Assuming for convenience that is a vector of zeros,
That is, if regressors are uncorrelated, again specifies the minimal influence of . Even when regressors are correlated, the first time that a regression parameter is activated occurs when is equal to the highest diagonal element of .
These results can be compared to a rescaled version of the lasso by defining , which is the average absolute deviation of from . Assuming that regressors are uncorrelated, then the moment of activation of the regressor is given by
For , the moment of activation is again given by . If is a vector of zeros and a subset of relevant parameters are equally responsible for a perfect fit of , then this subset is activated at a value of . The moment of activation of a relevant regressor then equals . In other words, the inclusion of irrelevant regressors delays the moment that relevant regressors are activated by this rescaled lasso. The adaptive lasso and the lasso are special cases of a '1ASTc' estimator. The latter only groups parameters together if the absolute correlation among regressors is larger than a user-specified value.[6]
Bayesian interpretation
Just as ridge regression can be interpreted as linear regression for which the coefficients have been assigned normal prior distributions, lasso can be interpreted as linear regression for which the coefficients have Laplace prior distributions. The Laplace distribution is sharply peaked at zero (its first derivative is discontinuous at zero) and it concentrates its probability mass closer to zero than does the normal distribution. This provides an alternative explanation of why lasso tends to set some coefficients to zero, while ridge regression does not.[1]
Convex relaxation interpretation
Lasso can also be viewed as a convex relaxation of the best subset selection regression problem, which is to find the subset of covariates that results in the smallest value of the objective function for some fixed , where n is the total number of covariates. The " norm", , (the number of nonzero entries of a vector), is the limiting case of " norms", of the form (where the quotation marks signify that these are not really norms for since is not convex for , so the triangle inequality does not hold). Therefore, since p = 1 is the smallest value for which the " norm" is convex (and therefore actually a norm), lasso is, in some sense, the best convex approximation to the best subset selection problem, since the region defined by is the convex hull of the region defined by for .
Tibshirani, Robert. 1996. “Regression Shrinkage and Selection via the lasso”. Journal of the Royal Statistical Society. Series B (methodological) 58 (1). Wiley: 267–88. http://www.jstor.org/stable/2346178 (页面存档备份,存于互联网档案馆).
Coad, Alex; Srhoj, Stjepan. Catching Gazelles with a Lasso: Big data techniques for the prediction of high-growth firms. Small Business Economics. 2020, 55 (1): 541–565. doi:10.1007/s11187-019-00203-3.
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.