在微分几何中,魏尔斯特拉斯-恩内佩尔参数化(WE曲面、魏恩曲面、Weierstrauss-Enneper surfaces)是二维极小曲面[1]的参数化。
它以恩内佩尔(Enneper)和魏尔斯特拉斯的名字命名。他们在1863年发现了这个参数化。
设 f 是解析函数、g 是亚纯函数、fg2 是 全纯函数、c1, c2, c3 是常数。若(x1,x2,x3)是曲面M的坐标以及
则M是极小流形。[2]逆命题也是事实:若曲面M有上面的参数化,则M是极小的。[3]
比方说,恩内佩尔曲面具有 。
Costa曲面使用魏爾斯特拉斯橢圓函數。[2]
Remove ads
参考文献
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.
Remove ads