Loading AI tools
来自维基百科,自由的百科全书
金兹堡-朗道方程,或金兹堡-朗道理论,是由维塔利·金兹堡和列夫·朗道在1950年提出的一个描述超导现象的理论[1]。早期的金兹堡-朗道方程只是一个唯象的数学模型,从宏观的角度描述了第一类超导体。1957年,苏联物理学家阿列克谢·阿布里科索夫基于金兹堡-朗道理论提出了第二类超导体的概念[2]。1959年,列夫·戈尔科夫结合BCS理论,从微观角度严格证明了金兹堡-朗道理论是BCS理论的一种极限情况[3]。为了表彰金兹堡和阿布里科索夫对超导理论的贡献,他们与研究超流理论的安东尼·莱格特共同获得了2003年的诺贝尔物理学奖。
金兹堡-朗道方程是由金兹堡和朗道在朗道的二级相变理论的基础上提出的[4]。他们断言超导态可以通过一个复序参量(complex order parameter)ψ(r) 来表征。这个形似波函数的序参量测量的是超导体在低于超导转变温度Tc时的超导有序度("degree of superconducting order"),在BCS理论的框架中可以视为描述库柏对质量中心位置的单粒子波函数[5]。在临界相变点附近,超导体的自由能密度 可被展开为如下形式:
若 ,则上式化为常态下的自由能 。表示有效质量,表示有效电荷,A 是磁矢势,为磁场强度。在后续的实验中,人们发现 ( 为基本电荷)。
当自由能取极小值时可得金兹堡-朗道方程:
由 ,可推导出电流密度
如果不考虑金兹堡-朗道方程中的磁场与梯度项,方程可化为:
由于 ,当 时,自由能的最小值出现在 ,对应着非超导的普通状态。当 时,自由能的最小值出现在 ;之所以被记为 ,是因为 是在超导体内部“无穷深”处取得的这一函数值,“无穷深”意味着完全屏蔽了外表面的电磁场或电流。[6]
若已知 ,且 ,则可以计算出金兹堡-朗道方程中各个系数的表达式。使用经验方程进行估计可知:
其中 。[6]
金兹堡-朗道方程预测了超导体中两个新的特征长度。
第一个叫做超导相干长度ξ。对于T > Tc (一般相),相干长度由以下方程给出:
对于 T < Tc (超导相),相干长度由以下方程给出:
第二个叫做穿透深度λ。这个概念最初是由伦敦兄弟在他们的伦敦理论中提出的。如果使用金兹堡-朗道模型中的参数来表示,穿透深度可以写作:
其中ψ0 表示在没有电磁场的条件下序参量的平衡值。外加磁场在超导体中的指数衰减可以通过穿透深度来定义。通过计算超导电子密度恢复到其平衡值ψ0 时产生的微小扰动,我们可以确定这个指数衰减。磁场的指数衰减与高能物理中的希格斯机制是等价的。
朗道还定义了一个参数κ。κ = / 现今被称为金兹堡-朗道参数。朗道提出,第一类超导体应满足 0<κ<1/,而第二类超导体应满足κ>1/。如此一来,金兹堡-朗道理论通过定义这两个长度,就表征了所有的超导体。
金兹堡-朗道方程可化为以下形式的非线性偏微分方程:
其中是一个复值函数,且有{x∈ℝ, t≥0};a和c为复常数,b∈ℝ。若假设a、b、c都是正实数,则金兹堡-朗道方程有下列行波解:
部分解析解的行为如下所示:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.