金兹堡-朗道方程,或金兹堡-朗道理论,是由维塔利·金兹堡和列夫·朗道在1950年提出的一个描述超导现象的理论[1]。早期的金兹堡-朗道方程只是一个唯象的数学模型,从宏观的角度描述了第一类超导体。1957年,苏联物理学家阿列克谢·阿布里科索夫基于金兹堡-朗道理论提出了第二类超导体的概念[2]。1959年,列夫·戈尔科夫结合BCS理论,从微观角度严格证明了金兹堡-朗道理论是BCS理论的一种极限情况[3]。为了表彰金兹堡和阿布里科索夫对超导理论的贡献,他们与研究超流理论的安东尼·莱格特共同获得了2003年的诺贝尔物理学奖。
金兹堡-朗道方程预测了超导体中两个新的特征长度。
第一个叫做超导相干长度ξ。对于T > Tc (一般相),相干长度由以下方程给出:
对于 T < Tc (超导相),相干长度由以下方程给出:
第二个叫做穿透深度λ。这个概念最初是由伦敦兄弟在他们的伦敦理论中提出的。如果使用金兹堡-朗道模型中的参数来表示,穿透深度可以写作:
其中ψ0 表示在没有电磁场的条件下序参量的平衡值。外加磁场在超导体中的指数衰减可以通过穿透深度来定义。通过计算超导电子密度恢复到其平衡值ψ0 时产生的微小扰动,我们可以确定这个指数衰减。磁场的指数衰减与高能物理中的希格斯机制是等价的。
朗道还定义了一个参数κ。κ = / 现今被称为金兹堡-朗道参数。朗道提出,第一类超导体应满足 0<κ<1/,而第二类超导体应满足κ>1/。如此一来,金兹堡-朗道理论通过定义这两个长度,就表征了所有的超导体。
金兹堡-朗道方程可化为以下形式的非线性偏微分方程:
[7]
其中是一个复值函数,且有{x∈ℝ, t≥0};a和c为复常数,b∈ℝ。若假设a、b、c都是正实数,则金兹堡-朗道方程有下列行波解:
部分解析解的行为如下所示:
A.A. Abrikosov. On the Magnetic Properties of Superconductors of the Second Group. Zh.Eksp.Teor.Fiz. 1956-11, 32: 1442–1452.
Neil W. Ashcroft; N. David Mermin. Solid state physics 27. repr. New York: Holt, Rinehart and Winston. 1977: 747. ISBN 0030839939.
Tinkham, Michael. Introduction to superconductivity 2nd ed. Mineola, NY: Dover Publications. 2004: 111. ISBN 0486435032.
- 谷超豪 《孤立子理论中的达布变换及其几何应用》 上海科学技术出版社
- 阎振亚著 《复杂非线性波的构造性理论及其应用》 科学出版社 2007年
- 李志斌编著 《非线性数学物理方程的行波解》 科学出版社
- 王东明著 《消去法及其应用》 科学出版社 2002
- 何青 王丽芬编著 《Maple 教程》 科学出版社 2010 ISBN 9787030177445
- Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press
- Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997
- Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer.
- Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000
- Saber Elaydi,An Introduction to Difference Equationns, Springer 2000
- Dongming Wang, Elimination Practice,Imperial College Press 2004
- David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004
- George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759