在理论物理中,重整化群(renormalization group,简称RG)是一个在不同长度标度下考察物理系统变化的数学工具。
标度上的变化称为“标度变换”。重整化群与“标度不变性”和“共形不变性”的关系较为紧密。共形不变性包含了标度变换,它们都与自相似有关。在重整化理论中,系统在某一个标度上自相似于一个更小的标度,但描述它们组成的参量值不相同。系统的组成可以是原子,基本粒子,自旋等。系统的变量是以系统组成之间的相互作用来描述。
基本想法就是耦合常数依赖长度缩放或能量标度,重整化群帮助陈述耦合数量和能量标度的关系。默里·盖尔曼和Francis E. Low于1954年提出了下面量子电动力学的重整化群方程:[1]
g(μ) = G−1( (μ/M)d G(g(M)) ) ,
g(κ) = G−1( (κ/μ)d G(g(μ)) ) = G−1( (κ/M)d G(g(M)) )
费恩曼、朱利安·施温格、朝永振一郎在1965年赢了物理学的诺贝尔奖,因为他们都把重整化以及正規化等想法应用于量子电动力学。[2][3][4]
利奥·卡达诺夫在1966年推出块自旋的概念来解释重整化。[5]
然后肯尼斯·威爾森使用重整化群解决近藤问题,[6] 以及描述临界现象和第二相變。[7][8][9] 他1982年赢了诺贝尔奖。[10]
参见Phi fourth theory(四次交互论; 论)。欧几里得空间的拉氏量是
配分函数或泛函积分是:
通过重正化以及正规化 :
若 :
所以
介绍 :
所以新的拉氏量是以及
不同于,因为 改变了。 上面的 Z 陈述一个effective field theory。若 .
假设
所以
耦合常數的变量为 。耦合常數的演进是动力系统的临界点:
米切爾·費根鮑姆使用重整化群计算費根鮑姆常数,而且将重整化应用于分岔理論。[11]
阿图尔·阿维拉(巴西数学家)也将重整化群应用于动力系统、費根鮑姆常數等[12][13]
其他应用包括:
等
- S. R. White (1992): Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69, 2863. 有人说这是最成功的variational RG办法
- N. Goldenfeld (1993): Lectures on phase transitions and the renormalization group. Addison-Wesley.
- D. V. Shirkov (1999): Evolution of the Bogoliubov Renormalization Group. arXiv.org:hep-th/9909024 (页面存档备份,存于互联网档案馆). A mathematical introduction and historical overview with a stress on group theory and the application in high-energy physics.
- B. Delamotte (2004): A hint of renormalization. American Journal of Physics, Vol. 72, No. 2, pp. 170\u2013184, February 2004 (页面存档备份,存于互联网档案馆). A pedestrian introduction to renormalization and the renormalization group. For nonsubscribers see arXiv.org:hep-th/0212049 (页面存档备份,存于互联网档案馆)
- H.J. Maris, L.P. Kadanoff (1978): Teaching the renormalization group. American Journal of Physics, June 1978, Volume 46, Issue 6, pp. 652-657 (页面存档备份,存于互联网档案馆). A pedestrian introduction to the renormalization group as applied in condensed matter physics.
- K. Huang 黃克孫 (2013): A Critical History of Renormalization. arXiv:1310.5533 (页面存档备份,存于互联网档案馆)
- Shirkov, D. V. Fifty years of the renormalization group. CERN Courier. 2001-08-31 [2008-11-12]. (原始内容存档于2008-12-03).
- T. D. Lee 李政道; Particle physics and introduction to field theory, Harwood academic publishers, 1981, [ISBN 3-7186-0033-1]. 是总结
- L. Ts. Adzhemyan, N.V.Antonov and A. N. Vasiliev; The Field Theoretic Renormalization Group in Fully Developed Turbulence; Gordon and Breach, 1999. [ISBN 90-5699-145-0].
- Vasil'ev, A. N.; The field theoretic renormalization group in critical behavior theory and stochastic dynamics; Chapman & Hall/CRC, 2004. [ISBN 9780415310024] (Self-contained treatment of renormalization group applications with complete computations);
- Zinn-Justin, Jean; Quantum field theory and critical phenomena, Oxford, Clarendon Press (2002), ISBN 0-19-850923-5 (a very thorough presentation of both topics);
- The same author: Renormalization and renormalization group: From the discovery of UV divergences to the concept of effective field theories, in: de Witt-Morette C., Zuber J.-B. (eds), Proceedings of the NATO ASI on Quantum Field Theory: Perspective and Prospective, June 15–26, 1998, Les Houches, France, Kluwer Academic Publishers, NATO ASI Series C 530, 375-388 (1999) [ISBN ]. Full text available in PostScript (页面存档备份,存于互联网档案馆).
- Kleinert, H. and Schulte Frohlinde, V; Critical Properties of φ4-Theories, World Scientific (Singapore, 2001); Paperback ISBN 981-02-4658-7. Full text available in PDF (页面存档备份,存于互联网档案馆).