超球面
歐氏空間中球體的多維概括;嵌入(數+1)維歐幾里德空間中的數維對象 来自维基百科,自由的百科全书
在高维几何中,超球面(英語:Hypersphere)是指高維空間中,和一定点(称为中心)距離(称为半徑)為定值的點組成的集合。超球面是餘維數為1的流形,其維數比其空間維數少一。超球面的半徑越大,其曲率越小。若曲率趨近於0,稱為超平面。超球面和超平面都屬於超曲面。
超球面(hypersphere)一詞是由Duncan Sommerville在討論非歐氏幾何學的模型時出現的[1],第一個提的是四維空間中的三維球面。
有些球面不是超球面,若S是Em的球體,而所在空間為n, m < n,則S不是超球面。同樣的,任何空間內flat內的N维球面也不會是超球面,例如在三維空間中,圓不是超球面,但在二維空間中就是超球面。
参考文献
延伸阅读
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.