Loading AI tools
来自维基百科,自由的百科全书
賭徒謬誤(The Gambler's Fallacy)亦稱為蒙地卡羅謬誤(The Monte Carlo Fallacy),是一種機率謬誤,主張由於某事發生了很多次,因此接下來不太可能發生;或者由於某事很久沒發生,因此接下來很可能會發生。
賭徒謬誤的思維方式像是如此:抛一枚公平的硬幣,連續出現越多次正面朝上,下次抛出正面的機率就越小,抛出反面的機率就越大。[1][2]
賭徒謬誤可由重複抛硬幣的例子展示。抛一個公平硬幣,正面朝上的機會是,連續兩次抛出正面的機率是。連續三次抛出正面的機率等於,如此類推。
現在假設,我們已經連續四次抛出正面。犯賭徒謬誤的人說:「如果下一次再抛出正面,就是連續五次。連抛五次正面的機率是。所以,下一次抛出正面的機會只有。」
以上論證步驟犯了謬誤。假如硬幣公平,定義上拋出反面的機率永遠等於,不會增加或減少,拋出正面的機率同樣永遠等於。連續拋出五次正面的機率等於(0.03125),但這是指未拋出第一次之前。拋出四次正面之後,由於結果已知,在計算時會考慮為,即必然發生。無論硬幣拋出過多少次和結果如何,下一次拋出正面和反面的機率仍然相等。
假定拋出次,擲出正面的概率為,擲出反面的概率為,次後。
實際上,由於每次拋硬幣都是獨立事件,因此計算出機率是把拋硬幣當成連續事件。因為之前拋出了多次正面,而論證今次拋出反面機會較大,屬於謬誤。這種邏輯只在硬幣第一次拋出之前有效,因為這假定的是連續拋出五次正面,即。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.