皮埃爾·德·費馬于1636年发现了这个定理。在一封1640年10月18日的信中他第一次使用了上面的书写方式。在他的信中费马还提出a是一个素数的要求。
1736年,歐拉出版了一本名為“一些與素數有關的定理的證明”(拉丁文:Theorematum Quorundam ad Numeros PRIMOS Spectantium Demonstratio)”[2]的論文集,其中第一次给出了證明。但從萊布尼茨未發表的手稿中發現他在1683年以前已經得到幾乎是相同的證明。
有些數學家獨立提出相關的假說(有時也被錯誤地稱為中國猜想),當成立時,p是質數。這是費馬小定理的一個特殊情況。然而,這一假說的前設是錯的:例如,,而是一個偽素數。所有的偽素數都是此假說的反例。
如上所述,中國猜想仅有一半是正确的。符合中國猜想但不是素数的数被称为伪素数。
更极端的反例是卡迈克尔数:
假設與561互质,則被561除都余1。这样的数被称为卡邁克爾數,561是最小的卡邁克爾数。Korselt在1899年就给出了卡邁克爾數的等价定义,但直到1910年才由卡邁克爾(Robert Daniel Carmichael)发现第一个卡邁克爾数:561。1994年William Alford、Andrew Granville及Carl Pomerance证明了卡邁克爾数有无穷多个。
(i)若是整数,是质数,且。若不能整除,则不能整除。取整數集为所有小於的正整数集合(构成的完全剩余系,即中不存在两个数同余),是中所有的元素乘以组成的集合。因为中的任何两个元素之差都不能被整除,所以中的任何两个元素之差也不能被整除。
換句話說,,考慮共個數,將它們分別除以,餘數分別為,則集合為集合的重新排列,即在餘數中恰好各出現一次;這是因為對於任兩個相異而言(),其差不是的倍數(所以不會有相同餘數),且任一個亦不為的倍數(所以餘數不為0)。因此
即
在这里,且,因此将整个公式除以即得到:
- [3]
- 也即
(ii)若整除,则显然有整除,即。
- 計算除以13的餘數
故餘數為3。
- 證明對於任意整數a而言,恆為2730的倍數。
- 易由推得,其中為正整數。
- 故對指數13操作如下:13減1為12,12的正因數有1, 2, 3, 4, 6, 12,分別加1,為2, 3, 4, 5, 7, 13,其中2, 3, 5, 7, 13為質數,根據定理的延伸表達式,為2的倍數、為3的倍數、為5的倍數、為7的倍數、為13的倍數,即2*3*5*7*13=2730的倍數。
- 證明對於任意整數a而言,恆為3300的倍數。
證明
- 為132的倍數。
- 模仿前述操作,11減1為10,10的正因數有1, 2, 5, 10,分別加1,為2, 3, 6, 11,其中2, 3, 11為質數,因此為2, 3, 11的最小公倍數的倍數,即66的倍數。
- 考慮,因為奇數的11次方仍為奇數,且奇數與奇數之和為偶數,故當a為奇數時,為偶數;同理可知當a為偶數時,仍為偶數。因此當a為任意整數時,為偶數。
- 因此的倍數的倍數的倍數。
- 為25的倍數。
- 由後文的欧拉定理可知(當a與25互質時),即(當a為任意整數時)。因此為25的倍數。
- 因此為132與25的的最小公倍數的倍數,即3300的倍數。
卡邁克爾函數比欧拉函数更小。费马小定理也是它的特殊情况。
因為
所以由的結果可以得出的結果
用多項式除法可以得出除以的次數少於的餘式
例如,由多項式除法得到,則
這個餘式的一般結果是:
(除式)
n=0时为除式,用数学归纳法证明余式。[6]
- 求
許介彥. 費馬小定理 (PDF). 科學教育月刊 (私立大葉大學電機工程學系). 2006年10月, (第293期): 37–44 [2015-04-18]. (原始内容 (PDF)存档于2015-04-18).
黄嘉威. 多项式除法解高次同余. 数学学习与研究. 2015, (9): 第104页 [2015-07-19]. (原始内容存档于2020-10-20).