Remove ads
數學定理 来自维基百科,自由的百科全书
费马小定理(英語:Fermat's little theorem)是数论中的一个定理。假如是一个整数,是一个質数,那么是的倍数,可以表示为
如果不是的倍数,這個定理也可以寫成更加常用的一種形式
註:如果是的倍数,則
費馬小定理的逆敘述不成立,即假如是的倍数,不一定是一个質数。例如是的倍数,但,不是質数。滿足費馬小定理的合數被稱為费马伪素数。
皮埃爾·德·費馬于1636年发现了这个定理。在一封1640年10月18日的信中他第一次使用了上面的书写方式。在他的信中费马还提出a是一个素数的要求。
1736年,歐拉出版了一本名為“一些與素數有關的定理的證明”(拉丁文:Theorematum Quorundam ad Numeros PRIMOS Spectantium Demonstratio)”[2]的論文集,其中第一次给出了證明。但從萊布尼茨未發表的手稿中發現他在1683年以前已經得到幾乎是相同的證明。
有些數學家獨立提出相關的假說(有時也被錯誤地稱為中國猜想),當成立時,p是質數。這是費馬小定理的一個特殊情況。然而,這一假說的前設是錯的:例如,,而是一個偽素數。所有的偽素數都是此假說的反例。
如上所述,中國猜想仅有一半是正确的。符合中國猜想但不是素数的数被称为伪素数。
更极端的反例是卡迈克尔数: 假設與561互质,則被561除都余1。这样的数被称为卡邁克爾數,561是最小的卡邁克爾数。Korselt在1899年就给出了卡邁克爾數的等价定义,但直到1910年才由卡邁克爾(Robert Daniel Carmichael)发现第一个卡邁克爾数:561。1994年William Alford、Andrew Granville及Carl Pomerance证明了卡邁克爾数有无穷多个。
(i)若是整数,是质数,且。若不能整除,则不能整除。取整數集为所有小於的正整数集合(构成的完全剩余系,即中不存在两个数同余),是中所有的元素乘以组成的集合。因为中的任何两个元素之差都不能被整除,所以中的任何两个元素之差也不能被整除。
換句話說,,考慮共個數,將它們分別除以,餘數分別為,則集合為集合的重新排列,即在餘數中恰好各出現一次;這是因為對於任兩個相異而言(),其差不是的倍數(所以不會有相同餘數),且任一個亦不為的倍數(所以餘數不為0)。因此
即
在这里,且,因此将整个公式除以即得到:
(ii)若整除,则显然有整除,即。
若为质数,为整数,且。考慮二項式係數,並限定不為或,則由於分子有質數,但分母不含,故分子的能保留,不被約分而除去,即恆為的倍數[4]。
再考慮的二項式展開,模,則
因此
令,即得。[3]
在抽象代数教科书中,费马小定理常作为教授拉格朗日定理时的一个简单例子[5]。显然只需考虑 情形。此时模 所有非零的余数,在同余意义下对乘法构成一个群,这个群的阶是 。考虑群中的任何一个元素 ,根据拉格朗日定理, 的阶必整除群的阶。证毕。
故餘數為3。
费马小定理是欧拉定理的一个特殊情况:如果 ,那么
这里 是欧拉函数。欧拉函数的值是所有小于或等于 的正整数中与 互質的数的个数。假如 是一个素数,则 ,即费马小定理。
上面证明费马小定理的群论方法,可以同理地证明欧拉定理。
考虑所有与 互素的数,这些数模 的余数所构成的集合,记为 ,并将群乘法定义为相乘后模 的同余。显然 是一个群,因为它对群乘法封闭(若 和 则 ),含幺元(即“1”),且任何一个元素 的逆元素也在集合中(因为若 则由群乘法封闭性任何 的幂次都在 中,所以 是 这个有限集的子集)。根据定义, 的阶是 ,于是根据拉格朗日定理, 中任何一个元素的阶必整除 。证毕。
卡邁克爾函數比欧拉函数更小。费马小定理也是它的特殊情况。
因為
所以由的結果可以得出的結果
用多項式除法可以得出除以的次數少於的餘式
例如,由多項式除法得到,則
這個餘式的一般結果是:
(除式)
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.