涡量方程(英語:vorticity equation)是流体力学中描述流体质点涡量变化的方程。可压缩牛顿流体的涡量方程表达式为: D ω D t = ∂ ω ∂ t + ( u ⋅ ∇ ) ω = ( ω ⋅ ∇ ) u − ω ( ∇ ⋅ u ) + 1 ρ 2 ∇ ρ × ∇ p + ∇ × ( ∇ ⋅ τ ρ ) + ∇ × ( B ρ ) {\displaystyle {\begin{aligned}{\frac {D{\boldsymbol {\omega }}}{Dt}}&={\frac {\partial {\boldsymbol {\omega }}}{\partial t}}+(\mathbf {u} \cdot \nabla ){\boldsymbol {\omega }}\\&=({\boldsymbol {\omega }}\cdot \nabla )\mathbf {u} -{\boldsymbol {\omega }}(\nabla \cdot \mathbf {u} )+{\frac {1}{\rho ^{2}}}\nabla \rho \times \nabla p+\nabla \times \left({\frac {\nabla \cdot \tau }{\rho }}\right)+\nabla \times \left({\frac {B}{\rho }}\right)\end{aligned}}} 其中D/Dt表示物质导数,u为流速,ρ为流体密度,p为压强,τ为粘性应力张量,B为流体所受外力。方程右边第一项表示涡旋伸展。使用爱因斯坦求和约定指标记号,上式又可写作 d ω i d t = ∂ ω i ∂ t + v j ∂ ω i ∂ x j = ω j ∂ v i ∂ x j − ω i ∂ v j ∂ x j + e i j k 1 ρ 2 ∂ ρ ∂ x j ∂ p ∂ x k + e i j k ∂ ∂ x j ( 1 ρ ∂ τ k m ∂ x m ) + e i j k ∂ B k ∂ x j {\displaystyle {\begin{aligned}{\frac {d\omega _{i}}{dt}}&={\frac {\partial \omega _{i}}{\partial t}}+v_{j}{\frac {\partial \omega _{i}}{\partial x_{j}}}\\&=\omega _{j}{\frac {\partial v_{i}}{\partial x_{j}}}-\omega _{i}{\frac {\partial v_{j}}{\partial x_{j}}}+e_{ijk}{\frac {1}{\rho ^{2}}}{\frac {\partial \rho }{\partial x_{j}}}{\frac {\partial p}{\partial x_{k}}}+e_{ijk}{\frac {\partial }{\partial x_{j}}}\left({\frac {1}{\rho }}{\frac {\partial \tau _{km}}{\partial x_{m}}}\right)+e_{ijk}{\frac {\partial B_{k}}{\partial x_{j}}}\end{aligned}}} 对于保守外力作用下的不可压缩流体,涡量方程可以简化为 D ω D t = ( ω ⋅ ∇ ) u + ν ∇ 2 ω {\displaystyle {\frac {D{\boldsymbol {\omega }}}{Dt}}=\left({\boldsymbol {\omega }}\cdot \nabla \right)\mathbf {u} +\nu \nabla ^{2}{\boldsymbol {\omega }}} 其中ν为运动黏度,∇2为拉普拉斯算符。 参考文献 Manna, Utpal; Sritharan, S. S. Lyapunov Functionals and Local Dissipativity for the Vorticity Equation in LTemplate:Isup and Besov spaces. Differential and Integral Equations. 2007, 20 (5): 581–598. Barbu, V.; Sritharan, S. S. M-Accretive Quantization of the Vorticity Equation (PDF). Balakrishnan, A. V. (编). Semi-Groups of Operators: Theory and Applications. Boston: Birkhauser. 2000: 296–303 [2016-12-10]. (原始内容存档 (PDF)于2016-03-03). Krigel, A. M. Vortex evolution. Geophysical, Astrophysical Fluid Dynamics. 1983, 24: 213–223. Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.