Loading AI tools
来自维基百科,自由的百科全书
胺基酸醯基轉運核醣核酸合成酶,又稱胺酰-tRNA合成酶(aminoacyl tRNA synthetase,通常简写为aaRS或ARS)是一类催化特定胺基酸或其前体与对应tRNA发生酯化反应而形成胺酰tRNA的酶。由于每一种的胺基酸与tRNA的连接都需要专一性的胺酰tRNA合成酶来催化,因此胺酰tRNA合成酶的种类与标准胺基酸的数量一样都为20种。
在翻译过程中,每种tRNA分子都需要与相应的胺基酸结合,然后将这些胺基酸运送到核糖体进行蛋白质合成。这种结合是在一系列胺酰-tRNA合成酶的作用下完成的,这些酶通过酯化反应将正确的胺基酸与对应的tRNA分子相连接。连接反应的第一步是在合成酶作用下,ATP分子和对应的胺基酸(或其前体)结合形成胺酰-AMP(腺苷酸),并释放出无机焦磷酸(PPi)。然后,酶与胺酰-AMP复合物再与正确的tRNA分子结合,催化胺基酸从胺酰-AMP转移到tRNA的3'端最后一个碱基的2'-或3'-羟基上。一些合成酶还具有校对功能以确保tRNA结合的正确性:如果tRNA被发现与错误的胺基酸相连接,那么所形成的胺酰-tRNA会通过水解重新被打开。[2]
胺酰-tRNA合成酶所催化反应的反应式如下:[2]
总反应式:胺基酸 + tRNA + ATP → 胺酰-tRNA + AMP + PPi
根据序列和活性位点的结构的不同,胺酰-tRNA合成酶可以被分为两大类:[2][3]
无论胺酰基开始被连接到腺苷上的哪一个羟基上,最终都会连接到3'羟基上,因为2'-O-胺酰-tRNA会通过酯交换反应(transesterification)转移到3'羟基上。
两类胺酰-tRNA合成酶都是多结构域蛋白质。典型的情况下,一个胺酰tRNA合成酶是由一个催化结构域(以上反应发生的区域)和一个反密码子结合结构域(与tRNA上的反密码子作用的区域,来保证胺基酸结合到正确的tRNA分子上)。一些胺酰-tRNA合成酶还具有RNA结合结构域和「编辑」结构域,负责将不正确连接的胺酰-tRNA重新打开。[4]
同一类型中所有的胺酰-tRNA合成酶的催化结构域都是同源的,但两个类型(类型I和II)之间却没有同源关系。类型I的胺酰-tRNA合成酶普遍具有罗斯曼折叠和反平行的β折叠结构,而类型II的酶则具有不同的由反平行的β折叠所形成的结构。
同一专一性中多数氨酰-tRNA合成酶在进化上的相关性比而不同专一性之间要高得多。然而,天冬酰氨酰-tRNA合成酶(AsnRS)和谷胺酰胺酰-tRNA合成酶(GlnRS)则分别相似于天冬胺酰-tRNA合成酶(AspRS)和谷氨酰-tRNA合成酶(GluRS)。大多数胺酰-tRNA合成酶属于类型I或II,而赖氨酰-tRNA合成酶(LysRS)则具有两个版本:一个属于类型I,另一个属于类型II。[5]
多数胺酰-tRNA合成酶的每一种都具有典型的进化分布规律,即可以古菌、细菌和真核生物来分组,相应组别中的酶进化关系接近。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.