正电子发射断层扫描(英語:Positron emission tomography,简称PET)[1]简称正子斷層造影、正电子成像术,是一种核医学临床检查的成像技术。PET技术是目前唯一的用解剖形态方式进行功能、代谢和受体显像的技术,具有无创伤性的特点并能提供全身三维和功能運作的图像。正电子发射计算机断层扫描既是医学也是研究的工具。在肿瘤学临床醫學影像和癌扩散方面的研究方面有着大量的应用。
准备工作
進行掃描前,人們使用半衰期較短的放射性同位素示蹤劑(或稱為顯影劑,如氟化脫氧葡萄糖,其放射性同位素为氟-18,常用于肿瘤成像),其衰變過程會放射出正電子,將其通過化學反應置換到生物體容易代謝的分子裡,然後把它注射入生物體內(通常進入血液循環)。人們需要等待一段時間,使該分子進入生物體的代謝系統中(常用的氟化脫氧葡萄糖,醣類的一種,一般等待時間在一個小時左右)並集中於需確認的器官,然後將實驗對象或患者安置在影像掃描器上。
扫描器
当注射到人体内的放射性同位素经历正电子放射衰变时(又称为正电子的β衰变),它释放出一个正电子(即一个电子相对应的反粒子),在经历了几个毫米的旅行后,正电子将會與生物體中的一個电子遭遇并產生電子對湮滅,产生一对湮灭光子射向几乎背對背的两个方向。当它们遇到偵測器中的闪烁晶体物质时,会造成一点光亮,而被光敏感的光电倍增管或雪崩光電二極體所探测到。此种技术依靠对于一对光子的并发事件(同時事例)探测,非同时發生抵達偵測器(即相差几个奈秒以上的时間)的光子将被視為背景事件而不考虑在其中。
影像重建
PET扫描器获得的原始数据是一系列由探测器获得,由正子與電子湮灭產生的一對光子的并发事件。每个并发事件背后,有一个正电子逸出,从而引发一个湮灭事件,在空间中同时射出背向的两个光子并被捕捉到。
并发事件重组成投影图像,成为sinograms。sinograms被多角度和方向排列组合後,构成3维图像。普通的一次PET扫描,数据量达到几百万个事例,而相對於電腦斷層掃描(CT)則可以达到几十亿个事例。由此可見,PET数据遭遇的散射和偶发事件(即背景事件)比率远比CT为多。
事实上,人们需要非常多地对数据进行预处理,校正由随机并发造成的影响,估计并去除散射的光子,探测头不工作期(dead-time、每次探测到一个光子之后,探测头需要一個短暫的恢復時間)的校正,及探测器敏感性校正(为探测头内在敏感性及由于并发事件发生的角度产生的敏感性)。
安全考虑
PET扫描是非侵入性的,但是会暴露在放射性同位素下。放射总量很少,通常在7个毫单位西弗(Sv)左右。与之相比,在英国平均每年环境辐射达到2.2 mSv,胸部X光辐射0.02 mSv,CT胸部辐射8 mSv,空中乘务人员每年接受辐射2-6 mSv,而在康沃爾郡每年环境辐射达到7.8 mSv。(数据来源,英国国家辐射保护协会)。然而,在临床应用领域,PET一般与CT同时运用,介于PET对软组织成像的优势结合成熟的CT技术,PET/CT是现在商业PET的主要形式,市面上几乎没有独立的医用PET销售。
应用
PET可用于肿瘤学诊断。在进行这种检查前,会先为受试者注射显影剂氟化脫氧葡萄糖(18F-FDG)。氟化脫氧葡萄糖是一种葡萄糖的类似物。相比普通的葡萄糖分子,氟化脫氧葡萄糖的一个羟基基团被氟的放射性同位素氟-18取代,因此具有放射性,会持续向外放出正电子。因为二碳位上的羟基被氟原子取代,氟化脫氧葡萄糖进入细胞被磷酸化后,不能被进一步代谢;又因带有电荷,也不能通过细胞膜上的通道蛋白运出细胞。因此,一旦氟化脫氧葡萄糖进入细胞,在氟-18衰变前,较长时间内都会以磷酸化形式留在细胞内。癌细胞对葡萄糖的消耗量较高,因此,如果受试者体内存在癌细胞,在注射氟化脫氧葡萄糖后,癌细胞会摄入相对多的氟化脫氧葡萄糖。由此,利用PET检测出信号强(放射性强)的部位就可能存在癌细胞。根据得到的检测结果,就可以达成对恶性肿瘤的诊断[2][3]。
註釋
参考文献
参见
外部連結
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.