证据推理[RLS90]理论也定义了非加性“可证明性的概率”(或“认识概率”)作为逻辑蕴涵(可证明性)和概率二者的一般概念。这个想法通过考虑一个认识算子 K 扩大了标准命题逻辑,它表示一个理性代理关于世界的知识陈述。概率接着定义在结果的所有命题句子 p 的“认识全集” Kp 上,并争论说这是对于分析者最好的信息。从这个角度看,Dempster-Shafer理论好像是概率推理的普遍形式。
[A98] E. W. Adams. A Primer of Probability Logic. CSLI Publications, Stanford, 1998.
[C37] R. Carnap. Logical Foundations of Probability. University of Chicago Press, Chicago, USA, 1937.
[C91] R. Chuaqui. Truth, Possibility and Probability: New Logical Foundations of Probability and Statistical Inference. Number 166 in Mathematics Studies. North-Holland, 1991.
[G94] G. Gerla. Inferences in Probability Logic. Artificial Intelligence, 70(1–2):33–52, 1994.
[H05] R. Haenni. Towards a Unifying Theory of Logical and Probabilistic Reasoning. ISIPTA'05, 4th International Symposium on Imprecise Probabilities and Their Applications, pages 193–202, Pittsburgh, USA, 2005. [1]
[J01] A. J?sang. A logic for uncertain probabilities. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 9(3):279–311, 2001.
[KM95] J. Kohlas and P.A. Monney. A Mathematical Theory of Hints. An Approach to the Dempster-Shafer Theory of Evidence. Lecture Notes in Economics and Mathematical Systems , vol. 425. Springer. 1995.
[K70] H. E. Kyburg. Probability and Inductive Logic. Macmillan, New York, 1970.
[K74] H. E. Kyburg. The Logical Foundations of Statistical Inference. Reidel, Dordrecht, Netherlands, 1974.
[N86] N. J. Nilsson. Probabilistic logic. Artificial Intelligence, 28(1):71–87, 1986.
[R05] J. W. Romeijn. Bayesian Inductive Logic. PhD thesis, Faculty of Philosophy, University of Groningen, Netherlands, 2005. [2]
[RLS92] E. H. Ruspini, J. Lowrance, and T. Strat. Understanding evidential reasoning. International Journal of Approximate Reasoning, 6(3):401–424, 1992.
[W02] J. Williamson. Probability Logic. In D. Gabbay, R. Johnson, H. J. Ohlbach, and J. Woods, editors, Handbook of the Logic of Argument and Inference: the Turn Toward the Practical, pages 397-424. Elsevier, Amsterdam, 2002.