Remove ads
日本人造卫星 来自维基百科,自由的百科全书
輝夜號[1](日语:かぐや,英語:KAGUYA)又稱輝夜姬號[2]、月亮女神號(日语:セレーネ,英語:SELENE),是日本發射的月球人造衛星,耗资2.7亿美元,日本宇宙航空研究開發機構人員表示此计划是繼美国《阿波罗计划》後規模最龐大的月球計划。輝夜姬號在当地时间2007年9月13日10时35分搭乘H2A-13火箭,从日本鹿儿岛县种子岛宇宙中心成功升空,开始了其为期一年的旅程[3]。輝夜姬號已經歷過兩次延期發射,第一次是從2007年8月16日延期到9月13日,第二次是從9月13日再延期到14日(協調世界時)。
「SELENE」一名是計劃名稱「Selenological and Engineering Explorer」的縮寫,發想於希臘神話中月亮女神的名字塞勒涅。此外,日本一般習慣會為成功發射上太空的衛星再取一個「正式名稱[4]」,而該衛星的正式名稱則是「かぐや」[5],取自日本傳說《竹取物語》中的「輝夜姬」。
發射之後,這顆衛星便很少再使用開發時的「月亮女神號」的名稱,無論是ISAS(宇宙開發研究所)或是JAXA的宣傳資料與報告上,皆是將本衛星稱呼為「輝夜號」。
而兩個子衛星,“中继星”命名為“翁”,“甚长基线干涉测量星”就命名為“妪”。取自日本傳說《竹取物语》中的伐竹翁及其夫人,即是辉夜姬的养父和养母。
以下時間以發射點時間為準:
輝夜姬號主要分為三部份:
輝夜姬號在發射20天後會進入橢圓形繞月軌道,之後還釋出兩個子衛星,分別在月球正面和背面運行,用作通訊和採測重力。輝夜姬號主衛星則將會在35天後逐步進入圓形繞月軌道,飛越月球兩極,於月球上空100公里繞月運行一年,進行各種觀測,以闡明月球的起源和演化,並在未來使用它,有關研究結果會在2009年公佈。
輝夜姬號搭載了14台觀測設備,儀器的精確度是過往的10倍至100倍,主要用來探勘月球地形,元素分布和月球重力,並尋找岩漿海洋。科學家認為這些數據有助研究月球的形成過程。[8]輝夜姬探月衛星發射時共攜帶14項觀測儀器,可分為調查月球表面物質的裝置,調查月球地形與地底構造的裝置,調查月球環境的裝置,調查月球重力分布的裝置,從月球調查地球的裝置及清晰拍攝月球與地球的裝置六大類,另有太陽能板及高增益天線等其他裝置:
調查月球表面元素分布狀況的裝置。由於月表受太陽照射吸收X射線,用X射線測定從月球物質釋出的X射線,可觀測構成元素的分布。
調查月球表面元素分布的裝置。月球表面的物質吸收宇宙射線,會釋放同為放射線的伽瑪射線。經由此測定,可檢測出元素的存量。同時也可以尋找月球上的水。精確度為過去的十倍。
以可見光及近紅外線攝影的裝置。用於調查岩石的種類與分布,解析度為20公尺,所獲得的岩石分布資訊,精密度為過去的10倍。
從可見光至紅外線的頻寬,觀測衛星正下方500公尺的狹小範圍。利用將波長約500~2600奈米的區域分割成296個加以辨別的方式,連礦物的種類都能標定。
利用向前與向後的兩個攝影機,拍攝月球表面的照片。解析度為10公尺。透過觀測,可取得月球表面的詳細立體地圖。
利用5兆赫的電波,了解月球地底構造的裝置。運用4根長15公尺的天線,詳細觀測來自2~5公里深處的反射電波,探索地層的構造等。原理類似魚群探測機。
朝向衛星正下方發射雷射光,精密測定光線反射的時間。根據測定的時間計算衛星與月面間的正確距離。調查月球的標高後,製作精密的地形圖,觀測期間將測定3000多萬個地點。
輝夜姬號所用的磁力計可測量地球磁場10萬分之一的微弱磁場。為避免受衛星本身儀器所發出的磁場干擾,攜帶於長12公尺的天線桿端。
利用多部檢測器探查照射月球表面的宇宙射線。未來人類若在月球表面活動,會影響人類的宇宙射線之測定。同時在主衛星面向月球的一測裝設射線偵測器,可調查月球斷層活動的情形。
探查月球四周電漿的裝置。利用4部感應器觀測月球四周之離子及電子的能量與方向。同時也以反射電子觀測月球表面的磁場異常。
VRAD衛星發射電波,用於表面重力的精密觀測與電離層觀測。重約50公斤,沿著距近月點100公里、遠月點800公里的橢圓軌道繞行。
當輝夜姬號飛到月球背面,繼續進行觀測時所用。因可準確測定輝夜姬號的軌道,使月球重力的測定達到極高的準確度。重約50公斤,環繞近月點100公里、遠月點為2400公里的軌道飛行。
VRAD衛星發射電波,用於表面重力的精密觀測與電離層觀測。重約50公斤,沿著距近月點100公里、遠月點800公里的橢圓軌道繞行。
可觀測地球的極光等。利用環繞月球軌道飛行的機會,同時捕捉地球南北兩極的極光。
共有2台分別為廣角與遠攝的高畫質照相機。拍攝月球看地球升起的「地球現身」首部動畫。一分鐘動畫傳送到地球約需20分鐘。
約23平方公尺,等同於13塊塌塌米的大小。太陽能板的配置方式為單獨一片,非對稱式。
負責將觀測數據傳回地球或和子衛星的傳輸。
測量月球重力的方式有兩種,一種是利用衛星的變動而測得,準確率較低;另一種則為相對VLBI,準確率高出前一方法之十倍。
測量月球背面重力的方法是由地球發射向中繼衛星的電波,測量中繼衛星的運動情況,同時中繼衛星也向主衛星(輝夜姬號)發射電波,測量主衛星的運動,然後由都卜勒計量度分析月球重力。正面則是直接由地球發射電波到主衛星上,在接收反射電波,即可知重力大小。
由地面站接收來自衛星的和一個星體(或類星體,方向和位置關係已知且能量強的星體)的電波,得知時間和位置的差異,即可得這三點的三維位置關係。
辉夜号地形相機拍攝的月球南極沙克爾頓坑內部的分析顯示,幾乎沒有裸露的水冰。調查月球背面莫斯科海發現其形成時間比過去估計結果早了5億多年。搭載的日本放送協会攝像機成功拍攝了「満地球の出」、「月面」,在2009年2月9日半影月食 (對月球來說為日食)發生時,首次拍攝到地球形成的倍里珠。[9]子衛星「翁」成功觀測月球背面的重力異常,增加了大碰撞說的可信度。
辉夜号準確測量了月球兩極的日照量,確認月球兩極有永久的陰影區,此後NASA的月球坑观测和传感卫星確認月球存在水。其它發現還包括月球表面存在鈾礦、[10]確認由阿波罗15号著陸產生的痕跡、確認月球表面下存在月球熔岩管,可以作為人類未來在月球居住區域的遮蔽物;[11]任務結束後成功控制墜落,也為未來無人登月進行了技術驗證。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.