旋转曲面是一条平面曲线C绕它所在平面的一条直线L旋转一周所生产的曲面,其中曲线C称之为该旋转曲面的母线,直线L称为该旋转曲面的旋转轴。 曲线x=2+cos z的一部分绕着z轴旋转。 例子包括球面,由圆绕着其直径旋转而成,以及环面,由圆绕着外面的一条直线旋转而成。 面积 如果曲线由参数方程 x ( t ) {\displaystyle x(t)} 、 y ( t ) {\displaystyle y(t)} 给出,其中 a < t < b {\displaystyle a<t<b} ,且旋转轴是 y {\displaystyle y} 轴,则旋转曲面 A {\displaystyle A} 的面积由以下的积分给出: A = 2 π ∫ a b x ( t ) ( d x d t ) 2 + ( d y d t ) 2 d t , {\displaystyle A=2\pi \int _{a}^{b}x(t)\ {\sqrt {\left({dx \over dt}\right)^{2}+\left({dy \over dt}\right)^{2}}}\,dt,} 条件是 x ( t ) {\displaystyle x(t)} 非负。这个公式与古尔丁定理是等价的。 ( d x d t ) 2 + ( d y d t ) 2 {\displaystyle \left({dx \over dt}\right)^{2}+\left({dy \over dt}\right)^{2}} 来自勾股定理,表示曲线的一小段弧,像弧长的公式那样。 2 π x ( t ) {\displaystyle 2\pi x(t)} 是这一小段的(重心的)路径。 如果曲线的方程是y = f(x),a ≤ x ≤ b,则积分变为: A = 2 π ∫ a b y 1 + ( d y d x ) 2 d x {\displaystyle A=2\pi \int _{a}^{b}y{\sqrt {1+\left({\frac {dy}{dx}}\right)^{2}}}\,dx} (绕着x轴旋转), A = 2 π ∫ a b x 1 + ( d x d y ) 2 d y {\displaystyle A=2\pi \int _{a}^{b}x{\sqrt {1+\left({\frac {dx}{dy}}\right)^{2}}}\,dy} (绕着y轴旋转)。 这可以由以上的公式推出。 例如,单位半径的球面由曲线x(t) = sin(t),y(t) = cos(t)旋转而得,其中 0 < t < π {\displaystyle 0<t<\pi } 。所以,它的面积为: A = 2 π ∫ 0 π sin ( t ) ( cos ( t ) ) 2 + ( sin ( t ) ) 2 d t = 2 π ∫ 0 π sin ( t ) d t = 4 π . {\displaystyle A=2\pi \int _{0}^{\pi }\sin(t){\sqrt {\left(\cos(t)\right)^{2}+\left(\sin(t)\right)^{2}}}\,dt=2\pi \int _{0}^{\pi }\sin(t)\,dt=4\pi .} 对于半径为r的圆 y ( x ) = r 2 − x 2 {\displaystyle y(x)={\sqrt {r^{2}-x^{2}}}} 绕着x轴旋转所得的曲面, A = 2 π ∫ − r r r 2 − x 2 1 + x 2 r 2 − x 2 d x {\displaystyle A=2\pi \int _{-r}^{r}{\sqrt {r^{2}-x^{2}}}\,{\sqrt {1+{\frac {x^{2}}{r^{2}-x^{2}}}}}\,dx} = 2 π ∫ − r r r r 2 − x 2 1 r 2 − x 2 d x {\displaystyle =2\pi \int _{-r}^{r}r\,{\sqrt {r^{2}-x^{2}}}\,{\sqrt {\frac {1}{r^{2}-x^{2}}}}\,dx} = 2 π ∫ − r r r d x {\displaystyle =2\pi \int _{-r}^{r}r\,dx} = 4 π r 2 {\displaystyle =4\pi r^{2}\,} 参见 旋转体 参考文献 Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 931-937, 1985. Goldstein, H. Classical Mechanics, 2nd ed. Reading, MA: Addison-Wesley, p. 42, 1980. Gray, A. "Surfaces of Revolution." Ch. 20 in Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 457-480, 1997. Hilbert, D. and Cohn-Vossen, S. "The Cylinder, the Cone, the Conic Sections, and Their Surfaces of Revolution." §2 in Geometry and the Imagination. New York: Chelsea, pp. 7-11, 1999. Isenberg, C. The Science of Soap Films and Soap Bubbles. New York: Dover, pp. 79-80 and Appendix III, 1992. Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.