"Andreas Floer's life was tragically interrupted, but his mathematical visions and striking contributions have provided powerful methods which are being applied to problems which seemed to be intractable only a few years ago." [1](安德烈斯·弗洛爾的生活雖然很不幸地終止,但是他對數學之遠見與卓越貢獻,提供了一些極為有效的方法,可以解決我們幾年前還以為無法解決的問題。)
Simon Donaldson: "The concept of Floer homology is one of the most striking developments in differential geometry over the past 20 years. ... The ideas have led to great advances in the areas of low-dimensional topology and symplectic geometry and are intimately related to developments in Quantum Field Theory"[2] ... "the full richness of Floer's theory is only beginning to be explored".[3](弗洛爾的同調理論是這二十年以來微分幾何上最令人注目的發現之一……他的創見在幾何拓撲學與辛拓撲領域造成很大的進步,並與量子場論有甚密切的關係。)……(我們目前才開始了解弗洛爾理論的整個價值。)
"Since its introduction by Andreas Floer in the late nineteen eighties, Floer theory has had a tremendous influence on many branches of mathematics including geometry, topology and dynamical systems. The development of new Floer theoretic tools continues at a remarkable pace and underlies many of the recent breakthroughs in these diverse fields."[4](自從安德烈斯·弗洛爾於1980年代末提出弗洛爾理論,其對數學許多分支之影響很大,包括幾何、拓撲學以及動力系統。以弗洛爾理論為基礎的新方法以很快的速度繼續產生,不少最近的突破都是從它而出發的。)
Floer, Andreas. An instanton-invariant for 3-manifolds. Comm. Math. Phys. 118 (1988), no. 2, 215–240. Project Euclid
Floer, Andreas. Morse theory for Lagrangian intersections. J. Differential Geom. 28 (1988), no. 3, 513–547.
Floer, Andreas. Cuplength estimates on Lagrangian intersections. Comm. Pure Appl. Math. 42 (1989), no. 4, 335–356.
Simon Donaldson, On the work of Andreas Floer, Jahresber. Deutsch. Math.-Verein. 95 (3) (1993) (页面存档备份,存于互联网档案馆), 103-120.
The Floer Memorial Volume (H. Hofer, C. Taubes, A. Weinstein, and E. Zehnder, eds.), Progress in Mathematics, vol. 133, Birkhauser Verlag, 1995.
Simon Donaldson, Floer Homology Groups in Yang-Mills Theory, With the assistance of M. Furuta and D. Kotschick. Cambridge Tracts in Mathematics, 147. Cambridge University Press, Cambridge, 2002. viii+236 pp. ISBN 0-521-80803-0
Hofer, Helmut. Coherent orientation for periodic orbit problems in symplectic geometry (jointly with A. Floer) Math. Zeit. 212, 13–38, 1993.
Hofer, Helmut. Symplectic homology I: Open sets in C^n (jointly with A. Floer) Math. Zeit. 215, 37–88, 1994.
Hofer, Helmut. Applications of symplectic homology I (jointly with A. Floer and K. Wysocki) Math. Zeit. 217, 577–606, 1994.
Hofer, Helmut. Symplectic homology II: A General Construction (jointly with K. Cieliebak and A. Floer) Math. Zeit. 218, 103–122, 1995.
Hofer, Helmut. Transversality results in the elliptic Morse theory of the action functional (jointly with A. Floer and D. Salamon) Duke Mathematical Journal, Vol. 80 No. 1 , 251–292, 1995. Download from H. Hofer's homepage at NYU (页面存档备份,存于互联网档案馆)
Hofer, Helmut. Applications of symplectic homology II (jointly with K. Cieliebak, A. Floer and K. Wysocki) Math. Zeit. 223, 27–45, 1996.
^ Hofer, Weinstein, and Zehnder, Andreas Floer: 1956-1991, Notices Amer. Math. Soc. 38 (8) , 910-911
^Mathematics: frontiers and perspectives. Edited by V. Arnold, M. Atiyah, P. Lax and B. Mazur. American Mathematical Society, Providence, RI, 2000. xii+459 pp. ISBN 0-8218-2070-2 (Amazon search)
^ From the Press Release to the Workshop New Applications and Generalizations of Floer Theory of the Banff International Research Station (BIRS), May 2007 ([5])