多卷波混沌吸引子 (N scroll chaotic attractor)也称N卷波吸引子 ,是實際混沌 電路(一般而言,是蔡氏電路 )加上一個非線性 電阻(例如蔡氏二極體 )而產生的奇異吸引子 。多卷波混沌吸引子可以用三個非線性常微分方程 以及三段的片段連續線性方程來描述。這可以簡化系統的數值模擬,也因為蔡氏電路的設計簡單,也很容易實作。
多卷波混沌吸引子在保密数码通讯,同步预测等方面有重要应用。
陈氏系统:
d
x
(
t
)
d
t
=
a
∗
(
y
(
t
)
−
x
(
t
)
)
,
{\displaystyle {\frac {\mathrm {d} x(t)}{\mathrm {d} t}}=a*(y(t)-x(t)),}
d
y
(
t
)
d
t
=
(
c
−
a
)
∗
x
(
t
)
−
x
(
t
)
∗
f
+
c
∗
y
(
t
)
,
{\displaystyle {\frac {\mathrm {d} y(t)}{\mathrm {d} t}}=(c-a)*x(t)-x(t)*f+c*y(t),}
d
z
(
t
)
d
t
=
x
(
t
)
∗
y
(
t
)
−
b
∗
z
(
t
)
{\displaystyle {\frac {\mathrm {d} z(t)}{\mathrm {d} t}}=x(t)*y(t)-b*z(t)}
其中
f
{\displaystyle f}
为调控函数:[ 1]
51 frame N scroll modified Chen attractor x axe vs t
f
=
g
∗
z
(
t
)
−
h
∗
sin
(
z
(
t
)
)
{\displaystyle f=g*z(t)-h*\sin(z(t))}
参数:
:= a = 35, c = 28, b = 3, g = 1, h = -25..25;
初始条件:
initv := x(0) = 1, y(0) = 1, z(0) = 14;
利用Maple 中龙格-库塔-菲尔伯格法 (Runge–Kutta–Fehlberg法,简称 RKF45)可得数字解并做图。
N scroll attractor based on Chen with sine and tau
f
=
d
0
∗
z
(
t
)
+
d
1
∗
z
(
t
−
τ
)
−
d
2
∗
sin
(
z
(
t
−
τ
)
)
{\displaystyle f=d0*z(t)+d1*z(t-\tau )-d2*\sin(z(t-\tau ))}
参数:
params := a = 35, c = 28, b = 3, d0 = 1, d1 = 1, d2 = -20..20, tau = .2;
初始条件:
initv := x(0) = 1, y(0) = 1, z(0) = 14;
利用Maple 中龙格-库塔-菲尔伯格法 (Runge–Kutta–Fehlberg法,简称 RKF45)可得数字解并做图。
2001年Tang等提出改进的蔡氏吸引子系统:.[ 2]
d
x
(
t
)
d
t
=
α
∗
(
y
(
t
)
−
h
)
{\displaystyle {\frac {\mathrm {d} x(t)}{\mathrm {d} t}}=\alpha *(y(t)-h)}
d
y
(
t
)
d
t
=
x
(
t
)
−
y
(
t
)
+
z
(
t
)
{\displaystyle {\frac {\mathrm {d} y(t)}{\mathrm {d} t}}=x(t)-y(t)+z(t)}
d
z
(
t
)
d
t
=
−
β
∗
y
(
t
)
{\displaystyle {\frac {\mathrm {d} z(t)}{\mathrm {d} t}}=-\beta *y(t)}
其中
h
:=
−
b
∗
s
i
n
(
π
∗
x
(
t
)
2
∗
a
+
d
)
{\displaystyle h:=-b*sin({\frac {\pi *x(t)}{2*a}}+d)}
参数:
params := alpha = 10.82, beta = 14.286, a = 1.3, b = .11, c = 7, d = 0;
初始条件:
initv := x(0) = 1, y(0) = 1, z(0) = 0;
利用Maple 中龙格-库塔-菲尔伯格法 (Runge–Kutta–Fehlberg法,简称 RKF45)可得数字解并做图:
9 卷波 超混沌蔡氏吸引子
9 卷波 超混沌蔡氏吸引子
延龄草型混沌吸引子
1993年 Miranda & Stone 提出下列方程组:[ 3]
d
x
(
t
)
d
t
=
1
/
3
∗
(
−
(
a
+
1
)
∗
x
(
t
)
+
a
−
c
+
z
(
t
)
∗
y
(
t
)
)
+
(
(
1
−
a
)
∗
(
x
(
t
)
2
−
y
(
t
)
2
)
+
(
2
∗
(
a
+
c
−
z
(
t
)
)
)
∗
x
(
t
)
∗
y
(
t
)
)
{\displaystyle {\frac {\mathrm {d} x(t)}{\mathrm {d} t}}=1/3*(-(a+1)*x(t)+a-c+z(t)*y(t))+((1-a)*(x(t)^{2}-y(t)^{2})+(2*(a+c-z(t)))*x(t)*y(t))}
∗
1
3
∗
x
(
t
)
2
+
y
(
t
)
2
{\displaystyle *{\frac {1}{3*{\sqrt {x(t)^{2}+y(t)^{2}}}}}}
d
y
(
t
)
d
t
=
1
/
3
∗
(
(
c
−
a
−
z
(
t
)
)
∗
x
(
t
)
−
(
a
+
1
)
∗
y
(
t
)
)
+
(
(
2
∗
(
a
−
1
)
)
∗
x
(
t
)
∗
y
(
t
)
+
(
a
+
c
−
z
(
t
)
)
∗
(
x
(
t
)
2
−
y
(
t
)
2
)
)
{\displaystyle {\frac {\mathrm {d} y(t)}{\mathrm {d} t}}=1/3*((c-a-z(t))*x(t)-(a+1)*y(t))+((2*(a-1))*x(t)*y(t)+(a+c-z(t))*(x(t)^{2}-y(t)^{2}))}
∗
1
3
∗
x
(
t
)
2
+
y
(
t
)
2
{\displaystyle *{\frac {1}{3*{\sqrt {x(t)^{2}+y(t)^{2}}}}}}
d
z
(
t
)
d
t
=
1
/
2
∗
(
3
∗
x
(
t
)
2
∗
y
(
t
)
−
y
(
t
)
3
)
−
b
∗
z
(
t
)
{\displaystyle {\frac {\mathrm {d} z(t)}{\mathrm {d} t}}=1/2*(3*x(t)^{2}*y(t)-y(t)^{3})-b*z(t)}
参数:
a
=
10
,
b
=
8
3
,
c
=
137
5
{\displaystyle a=10,\quad b={\frac {8}{3}},\quad c={\frac {137}{5}}}
初始条件:
x
(
0
)
=
−
8
,
y
(
0
)
=
4
,
z
(
0
)
=
10
{\displaystyle x(0)=-8,\quad y(0)=4,\quad z(0)=10}
利用Maple 中龙格-库塔-菲尔伯格法 (Runge–Kutta–Fehlberg法,简称 RKF45)可得数字解并做图:
2000年Aziz Alaoui 提出 PWL Duffing 方程:[ 4] 。
PWL 杜芬方程:
d
x
(
t
)
d
t
=
y
(
t
)
{\displaystyle {\frac {\mathrm {d} x(t)}{\mathrm {d} t}}=y(t)}
d
y
(
t
)
d
t
=
−
m
1
∗
x
(
t
)
−
(
1
/
2
∗
(
m
0
−
m
1
)
)
∗
(
|
x
(
t
)
+
1
|
−
|
x
(
t
)
−
1
|
)
−
e
∗
y
(
t
)
+
γ
∗
c
o
s
(
ω
∗
t
)
{\displaystyle {\frac {\mathrm {d} y(t)}{\mathrm {d} t}}=-m1*x(t)-(1/2*(m0-m1))*(|x(t)+1|-|x(t)-1|)-e*y(t)+\gamma *cos(\omega *t)}
参数:
params := e = .25, gamma = .14+(1/20)*i, m0 = -0.845e-1, m1 = .66, omega = 1; c := (.14+(1/20)*i),i=-25..25;
初始条件:
initv := x(0) = 0, y(0) = 0;
利用Maple 中龙格-库塔-菲尔伯格法 (Runge–Kutta–Fehlberg法,简称 RKF45)可得数字解并做图:
PWL Duffing chaotic attractor xy plot
PWL Duffing chaotic attractor plot