Loading AI tools
来自维基百科,自由的百科全书
範數(英語:Norm),是具有“长度”概念的函數。在線性代數、泛函分析及相關的數學領域,是一個函數,其為向量空間內的所有向量賦予非零的正長度或大小。另一方面,半範數(英語:seminorm)可以為非零的向量賦予零長度。
舉一個簡單的例子,一個二維度的歐幾里得空間就有歐氏範數。在這個向量空間的元素(譬如:(3,7))常常在笛卡兒座標系統被畫成一個從原點出發的箭號。每一個向量的歐氏範數就是箭號的長度。
假設V是域F上的向量空間;V的半範數是一個函數,满足:
,
範數是一個半範數加上額外性质:
绝对值范数為
是在由实数或虚数构成的一维向量空间中的范数。
绝对值范数是曼哈顿范数的特殊形式。
在n维欧几里德空间上,向量的最符合直觉的长度由以下公式给出
根据勾股定理,它给出了从原点到点之间的(通常意义下的)距离。欧几里德范数是上最常用的范数,但正如下面举出的,上也可以定义其他的范数。然而,以下定义的范数都定义了同一个拓扑结构,因此它们在某种意义上都是等价的。
在一个n维复数空间中,最常见的范数是:
以上公式适用于任何内积空间,包括欧式空间和复空间。在欧几里得空间里,内积等价于点积,因此公式可以写成以下形式:
特别地,中所有的欧几里得范数为同一个给定正实数的向量的集合是一个n维球面。
如果将复平面看作欧几里得平面,那么复数的欧几里得范数是其绝对值(又称为模)。这样,我们可把视为欧几里得平面上的一个向量,由此,这个向量的欧几里得范数即为(最初由欧拉提出)。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.