Remove ads
来自维基百科,自由的百科全书
仿紧空间,数学中,仿紧空间是指一类拓扑空间,他们的每个开覆盖都有局部有限的(开)加细(精细化)。这类空间的概念于1944年由Dieudonné引入 。每个紧致空间都是仿紧的。每个仿紧的豪斯多夫空间都是正规的。一个豪斯多夫空间是仿紧的当且仅当其任意开覆盖都可以单位分解。仿紧空间有时也被要求为豪斯多夫的。
仿紧空间的任意闭子空间是仿紧的。豪斯多夫空间的紧子集是闭的,但是对仿紧子集不成立。如果一个空间的任意子空间都是仿紧的,则其称为hereditarily paracompact,这等价于要求其每个开子空间是仿紧的。
集合 的一个覆盖,是指 的一个子集族,并且 包含于这族集合的并集。 设 是 的一族子集, 为子集的指标集, 若 ,则称 是 的覆盖;若每个 都是开的,则称 是 的一个开覆盖,即 的覆盖 中每个成员都是开的。
的一个开覆盖是局部有限的当且仅当X中的每一点存在一个邻域,其只与这覆盖中的有限个成员相交。用数学符号来说, 是局部有限的当且仅当任意 中的一点 ,存在一个邻域 ,使得 是有限的。
一些非仿紧空间的例子:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.