在物理学和数学中的向量分析中,亥姆霍兹定理,[1][2] 或称向量分析基本定理,[3][4][5][6][7][8][9] 指出对于任意足够光滑、快速衰减的三维向量场可分解为一个无旋向量场和一个螺线向量场的和,这个过程被称作亥姆霍兹分解。此定理以物理學家赫爾曼·馮·亥姆霍茲為名。[10]
这意味着任何矢量场 F,都可以视为两个势场(純量勢 φ 和向量勢 A)之和。
假定 F 為定義在有界區域 V ⊆ R3 裡的二次連續可微向量場,且 S 為 V 的包圍面,則 F 可被分解成無旋度及無散度兩部份:[11]
- ,
其中
如果 V = R3,且 F 在無窮遠處消失的比 快,則純量勢及向量勢的第二項為零,也就是說
[12]
(疑似有错误)
將F改寫成傅利葉轉換的形式:
純量場的傅利葉轉換是一個純量場,向量場的傅利葉轉換是一個維度相同的向量場。
現在考慮以下純量場及向量場:
所以