二刻尺作圖
允許測量某線段的長度是否跟已知的線段等長且線段的端點與已知點這三點共線的作圖方法 来自维基百科,自由的百科全书
允許測量某線段的長度是否跟已知的線段等長且線段的端點與已知點這三點共線的作圖方法 来自维基百科,自由的百科全书
二刻尺(希臘語:νεῦσις、拉丁转写:neusis)是一種幾何作圖的工具,是上面有二個刻度的直尺(刻度可以在作圖過程中標示),因此可以記錄長度。
二刻尺在古希臘時期曾經和圓規、(無刻度的)直尺一樣是在尺規作圖中合法的作圖工具。而後來的尺規作圖多限定只能使用無刻度的直尺,不允許使用二刻尺。
二刻尺介于刻度尺和尺规作图中的尺之间,既不同于日常使用的刻度尺(有许多刻度),也不同于尺规作图中的尺(没有刻度)。二刻尺有两个刻度,使得二刻尺上有某一固定长的线段。尺規作圖中的尺,可視为画无限长的直线工具,二刻尺可看作这种尺上任意添加了点A和点B两个点(AB两点长度固定却不确定某一数值)。
尺规作图中的尺只能用來將兩點連接起來。而二刻尺除了可以將兩點連接起來,還有以下用法:假設尺上的兩刻度距離為a,有兩條線l、m和點P,可以用二刻尺找到一條通過P的直線,使得此直線與直线l和m的两个交點间的距離為a。
如圖,有兩條線l、m和點P。可以將尺與點P對齊,並讓其中一個刻度保持在l(圖中黃點)上,慢慢轉動尺 (允許尺貼着P滑動),直到另一個刻度碰到m(圖中藍點),此線即為所求(圖中深藍色線)。
基本上,正n邊形可以由二刻尺作圖建構當n =
不過當n =
但目前仍然不知道對於以下的n,正n邊形能不能二刻尺作圖:
數學史學家T.L.希思(T. L. Heath)認為古希臘數學家恩諾皮德斯[a](公元前440年左右)是第一個把圓規和直尺的地位提高的人。這種避免使用二刻尺的理念多少影響了同一時期、同一座島上的几何学家希俄斯的希波克拉底(Hippocrates of Chios,不是醫師希波克拉底)[b](公元前430年左右)。100年後,歐幾里得在其著作中也盡量避免使用二刻尺作圖。
公元前4世紀,受到柏拉圖的理念论影響,尺規作圖被分成三個等級。這三個等級分別是:
二刻尺被放在第三級是因為它可以解決前兩級所不能解決的問題[c],因此二刻尺被當成解決問題的最終手段,這種簡單而有力的作圖工具也逐漸被當成不正當的作圖工具。希臘數學家亚历山大里亚的帕普斯(Pappus of Alexandria,公元前325年左右)認為:「這是一個不小的錯誤」。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.